leetcode刷题详解——粉刷房子

2023-11-22 08:36

本文主要是介绍leetcode刷题详解——粉刷房子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 题目链接:LCR 091. 粉刷房子

2. 题目描述:

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

请计算出粉刷完所有房子最少的花费成本。

示例 1:

输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。最少花费: 2 + 5 + 3 = 10。

示例 2:

输入: costs = [[7,6,2]]
输出: 2

提示:

  • costs.length == n
  • costs[i].length == 3
  • 1 <= n <= 100
  • 1 <= costs[i][j] <= 20

3. 解法(动态规划):

3.1 算法思路:

  1. 状态表示:

dp[i][0]表示:粉刷到i位置的时候,最后一个位置粉刷上红色,此时的最小花费

dp[i][1]表示:粉刷到i位置的时候,最后一个位置粉刷上蓝色,此时的最小花费

dp[i][2]表示:粉刷到i位置的时候,最后一个位置粉刷上绿色,此时的最小花费

  1. 状态转移方程:

如果第i个位置粉刷上红色,那么i-1 上可以是蓝色或者绿色。dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];

如果第i个位置粉刷上蓝色,那么i-1 上可以是红色或者绿色。dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];

如果第i个位置粉刷上绿色,那么i-1 上可以是红色或者蓝色。dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i - 1][2];

  1. 初始化:

可以在最前面加上一个辅助节点,帮助我们初始化,使用这种技巧要注意两个点:

赋值结点里面的值要保证后续填表是正确的

下标的映射关系

  1. 填表顺序:

根据动态转移方程得,从左往右,三个表一起填

  1. 返回值:

根据状态表示,应该返回最后一个位置粉刷上三种颜色情况下的最小值,因此需要返回 min(dp[n][0], min(dp[n][1], dp[n][2]));

请添加图片描述

3.2 C++算法代码:

class Solution {
public:int minCost(vector<vector<int>>& costs) {// 获取costs的行数int n = costs.size();// 初始化dp数组,大小为n+1行,3列vector<vector<int>> dp(n + 1, vector<int>(3));// 遍历每一行for (int i = 1; i <= n; i++) {// 计算第i行的最小花费,分别对应三种颜色dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i - 1][2];}// 返回最后一行中三种颜色的最小花费return min(dp[n][0], min(dp[n][1], dp[n][2]));}
};

这篇关于leetcode刷题详解——粉刷房子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/408868

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要