Linux | 从虚拟地址到物理地址

2023-11-21 20:30

本文主要是介绍Linux | 从虚拟地址到物理地址,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

        本章主要讲解虚拟地址是怎么转化成物理地址的,以及页表相关知识;本文环境默认为32位机器下;如果你连什么是虚拟地址都不知道可以先看看下面这篇文章;

Linux | 进程地址空间-CSDN博客

一、概念补充

页表:是一种数据结构,与硬件MMU配合可以将虚拟地址转化成物理地址,页表中主要建立虚拟地址与物理地址之间的映射;

页框:我们将真实物理内存以4KB为单位进行划分,其中每一个4KB我们称为一个页框;

页框号:识别页框的编号;

知识回顾: 

        之前我们讲解磁盘文件时,我们说过,通常进行一次IO的大小通常为4KB,即使你只修改1字节也是以4KB为单位将数据先加载进内存中;实际上,也正是加载进内存的空闲页框中;我们的磁盘文件也是以4KB进行划分;

        我们还说过我们的一个可执行程序在编译后形成可执行程序,这个可执行程序实际上已经在内部进行分段,分好了虚拟地址空间了;我们可以直接使用编译好的虚拟地址;

二、地址转化过程

        前面我们说过我们的物理内存会以4KB分为一个又一个页框;而操作系统是否需要维护这些页框呢?答案当然也是肯定的,我们可以将我们的页框用一种结构体描述起来,然后用数组维护这些页框,这样就有一个页框数组了,数组下标可作为页框号;假设一个为4GB的物理内存,可以有多少个页框呢?我们不难计算,4GB = 4 * 1024 * 1024 * 1024 Byte;

一个页框为4KB = 4 * 1024;两者相除,大约就是1024*1024,约一百万个;我们便可以用

struct page[1000000]; 即可表示所有物理内存中所有页框;

        首先我要讲解的是我们的虚拟地址通过页表+MMU将我们的虚拟地址转换成物理内存中的物理地址,若我们页表中没有物理内存中的地址,而是只有磁盘中的地址,此时是因为我们的数据没有被加载进磁盘,可能之前发生或换出或本来没有加载进磁盘内;这是我们在物理内存中申请一块空闲的页框,我们找到空闲的页框后,我们将磁盘文件加载进指定的页框,同时我们也在页表上进行更新,将新映射的物理内存地址填上去;这个过程也就是我们常说的缺页中断

        如果按上面的结构来看,页表中的每个条目记录一个虚拟地址映射一个物理地址,此时我们一共则需要 4 * 1024 * 1024 * 1024条记录(假设物理内存有4G);假设一条记录需要10个字节,那么一个页表的大小就需要40G;而我们的页表也是存在物理内存中呀!这显然是不可能存的下的,就算存的下也不可能消耗这么多内存资源存页表,况且一个进程就有一张用户级页表;计算机中绝对不止有一个进程;

        此时,我们用另一种思路,我们页表中将虚拟地址的32个比特位分开看;其中前10位我们一起看,作为页目录的索引来找到二级页表,然后接着10位用来查找页框号,最后12个比特位用来记录页内偏移;如下图所示;

        我们来计算一下,页目录最多有2^10,也就是1024条目录,对应着最多有1024个二级页表;每个二级页表也最有有2^10条目录,每条目录对应一个页框号,所有二级页表可以表示2^10 * 2^10 个页框,而我们的4GB内存最多也只有 2^20 个页框,刚好一一对应;最后12个比特位可以表示0到2^12 - 1,而2^12正好也就是4KB;也正好吻合;设页表每一条目为10字节,计算最大的情况下,总大小为 页目录大小(2^10 * 10 = 10KB)+ 所有二级目录大小(2 ^ 10 * 2 ^ 10 * 10 = 10MB);其中10KB可忽略,总大小最多为10M;这个大小比我们第一种方案要小了很多很多,这也是我们Linux下采用的方案;

这篇关于Linux | 从虚拟地址到物理地址的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/404892

相关文章

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

【Linux】应用层http协议

一、HTTP协议 1.1 简要介绍一下HTTP        我们在网络的应用层中可以自己定义协议,但是,已经有大佬定义了一些现成的,非常好用的应用层协议,供我们直接使用,HTTP(超文本传输协议)就是其中之一。        在互联网世界中,HTTP(超文本传输协议)是一个至关重要的协议,他定义了客户端(如浏览器)与服务器之间如何进行通信,以交换或者传输超文本(比如HTML文档)。

如何编写Linux PCIe设备驱动器 之二

如何编写Linux PCIe设备驱动器 之二 功能(capability)集功能(capability)APIs通过pci_bus_read_config完成功能存取功能APIs参数pos常量值PCI功能结构 PCI功能IDMSI功能电源功率管理功能 功能(capability)集 功能(capability)APIs int pcie_capability_read_wo