【星海随笔】redis 解析

2023-11-21 17:45
文章标签 redis 解析 随笔 星海

本文主要是介绍【星海随笔】redis 解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

redis

非关系型数据库
支持事务,操作都是原子性
所谓的原子性就是对数据的更改要么全部执行,要么全部不执行。

redis-server:顾名思义,redis服务
redis-cli:redis client,提供一个redis客户端,以供连接到redis服务,进行增删改查等操作
redis-sentinel:redis实例的监控管理、通知和实例失效备援服务
redis-benchmark:redis的性能测试工具
redis-check-aof:若以AOF方式的持久化,当意外发生时用来快速修复
redis-check-rdb:若以RDB方式的持久化,当意外发生时用来快速修复

Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API1。6379在是手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字。当Antirez为Redis选择一个数字作为默认端口号时,Antirez把"MERZ"在手机键盘上对应的数字6379拿来用了。

基础数据类型

五种类型

string(字符串) 基本形式:key value
hash(哈希)
list (列表)
set (集合)
zset (sorted set:有序集合)

基础类型可以配合watch进行操作

WATCH 机制:使用 WATCH 监视一个或多个 key , 跟踪 key 的 value 修改情况,如果有key 的 value 值在事务 EXEC 执行之前被修改了,整个事务被取消。EXEC 返回提示信息,表示事务已经失败。

设置过期时间
expire <key> <num> #设置key的有限期
ttl <key> #获取剩余多长时间

配置文件中hz设置定期删除时间

string

最大存储为512MB。
String类型除了可以存字符串也可以是int 和 float。

方法:

get <key> #根据key获取volume
set <key> <volume>  #设置key对应的volume
setnx <key> <value>	#当key不存在时才设置
setex <key> <seconds> <value>	# 设置key的值并设置过期时间(单位:秒)
psetex <key> <milliseconds> <value>	#设置key的值并设置过期时间(单位:毫秒)
del #删除
append <key> <value>	#将value追加到key的值的后面,即将该值与原来的值合并。
#mget //多个同时获取
#mset  //多个同时设置
strlen <key>  #获取字符串的长度
getrange <key> <start> <end> #获取key值对应的volume一段区间的值。volume 0 位开始计数。
incr <key> #使int自增一个数字。
incrby <key> <num> #使key增长指定的数字。
decr <key>
decrby <key> <num>

redis访问速度块、支持的数据类型比较丰富,所以redis很适合用来存储热点数据
设置一个键的生存时间,到时间后redis会删除它。利用这一特性可以运用在限时的优惠活动信息、手机验证码等业务场景。
redis由于incrby命令可以实现原子性的递增,所以可以运用于高并发的秒杀活动、分布式序列号的生成、具体业务还体现在比如限制一个手机号发多少条短信、一个接口一分钟限制多少请求、一个接口一天限制调用多少次等等。

数据库查询注意事项:

不推荐使用keys 命令去模糊匹配
Redis从2.8.0版本开始提供scan命令,这个命令可以以渐进的方式,分多次遍历整个数据库,并返回匹配给定模式的键。scan家族相关命令有scan,sscan,hscan和zscan,

HASH

每个 hash 可以存储 2^32 - 1 键值对(40多亿)。
hash 是一个 string 类型的 field(字段) 和 value(值) 的映射表
形式如: value=[{field1,value1},…{fieldN,valueN}]。
Hash 是一个键值对(key - value)集合

如果哈希类型元素个数小于 512 个(默认值,可由 hash-max-ziplist-entries 配置)
所有值小于 64 字节(默认值,可由 hash-max-ziplist-value 配置)的话,Redis 会使用压缩列表作为 Hash 类型的底层数据结构

# 删除哈希表key中的field键值
HDEL key field [field ...]    # 返回哈希表key中field的数量
HLEN key       
# 返回哈希表key中所有的键值
HGETALL key # 为哈希表key中field键的值加上增量n
HINCRBY key field n    设置hash值
HSET <hash_key> <dict_key> <dict_val> [field value ...]
将哈希表key的域field的值设置为value,返回值为新创建的field域的个数,对于已经存在的域进行了value的覆写,是不计算在返回值中的。获取hash值
HGET <hash_key> <dict_key>
获取指定的hash fieldHMGET <hash_key> <dict_key> [field ...]
获取全部指定的hash filedHMSET key field value [field value ...]
同时设置hash的多个field递增某一个域的值
HINCRBY key field increment
将指定的hash filed 加上给定值, 如果filed不是integer则报错判断某一个域是否存在
HEXISTS key field
测试指定field是否存在删除域
HDEL key field [field ...]
删除指定的hash field获取域的数量
HLEN key
返回指定hash的field数量获取所有的域名
HKEYS key
返回hash的所有field获取所有域的值
HVALS key
返回hash的所有value获取所有域名和值
HGETALL key

list

List在在内存中按照一个name对应一个List来存储
在key对应的list添加字符串元素,L:代表左Push,R:代表右Push,成功返回list的长度,失败返回0。
由于redis类库中没有提供对列表元素的增量迭代,如果想要循环<key>对应的列表的所有元素,那么就需要:
获取name对应的所有列表、循环列表

添加	   rpush、lpush、linsert
修改	   lset
删除	   lpop、rpop、lrem、ltrim
查询	   lrange、lindex、llen
阻塞操作	   blpop、brpop
弹出/	  rpoplpush
r.lpush(<key>, 11,22,33)
# 保存顺序为: 33,22,11
lpushx(<key>,<value>) #添加到列表的最左边
lpop <key> [count] #删除某个元素
r.lset(<key>, <index>, <value>) #对某个值重新赋值
llen(<key>) #获取长度
print(re.lrange( <name>,<start>,<end> ))   #列表分片获取数据
lindex(<key>, index) #根据索引查找元素

如果列表非常大,那么就有可能在第一步时就将程序的内存撑爆,所有有必要自定义一个增量迭代的功能:
迭代遍历列表

import redis
conn=redis.Redis(host='127.0.0.1',port=6379)
# conn.lpush('test',*[1,2,3,4,45,5,6,7,7,8,43,5,6,768,89,9,65,4,23,54,6757,8,68])
# conn.flushall()
def scan_list(name,count=2):index=0while True:data_list=conn.lrange(name,index,count+index-1)if not data_list:returnindex+=countfor item in data_list:yield item
print(conn.lrange('test',0,100))
for item in scan_list('test',5):print('---')print(item)

集合set

Set命令用于存储一个或多个字符串值到一个键中。如果该键不存在,则会创建一个新键。
Set数据结构是dict字典,字典是用哈希表实现的。

SET <key> <value> 
sadd <key> <value1> <value2>..	添加一个或多个元素到集合中
smembers <key> 	取出该集合的所有值
simembers <key> <value>	判断集合中是否含有该<value>值
scard <key>	返回该集合的元素个数
srem <key><value1><value>	删除集合中和某几个元素
spop <key>	随机从该集合吐出一个元素
srandmember <key> <n>	随机从该集合中取出n个值,不会从集合中删除
smove <source> <destination> <value>	把集合中一个值从一个集合移动到另一个集合
sinter <key1> <key2>	返回两个集合的交集元素
sunion <key1> <key2>	返回两个集合并集元素
sdiff <key1> <key2>	返回两个集合中的差集元素 (key1中的,不包含key2中的)

Redis的Set命令是一种强大的数据存储和操作工具,可以用于存储、查询和更新不重复的元素。通过合理的使用Set命令,可以实现高效、可靠和灵活的数据存储和操作,满足不同业务需求的要求。
排序集合是唯一元素(比如:用户id)的集合,每个元素按分数排序,这样可以快速的按分数来检索元素

有序集合zset

Redis有序集合zset与普通集合set非常相似,是一个没有重复元素的字符串集合。
不同之处是有序集合的每个成员都关联了一个评分(score),这个评分(score)被用来按照从最低分到最高分的方式排序集合中的成员。集合的成员是唯一的,但是评分可以是重复了 。
因为元素是有序的, 所以你也可以很快的根据评分(score)或者次序(position)来获取一个范围的元素。
访问有序集合的中间元素也是非常快的,因此你能够使用有序集合作为一个没有重复成员的智能列表。

zrangebyscore key minmax [withscores] [limit offset count]返回有序集 key 中,所有 score 值介于 min 和 max 之间(包括等于 min 或 max )的成员。有序集成员按 score 值递增(从小到大)次序排列。 zrevrangebyscore key maxmin [withscores] [limit offset count]               同上,改为从大到小排列。 zincrby <key> <increment> <value>为元素的score加上增量zcount <key> <min> <max>统计该集合,分数区间内的元素个数 zrank <key> <value>返回该值在集合中的排名,从0开始。

redis 淘汰策略

  1. 设置redis最大内存配置-maxmemory
    移除规则可以通过maxmemory-policy来指定。
    设置达到最大内存时的移除策略-maxmemory-policy

volatile-lru :使用LRU算法移除key,只对设置了过期时间的Key进行淘汰。(最近最少使用策略)
allkeys-lru: 在所有集合key中,使用LRU算法移除key。
volatile-lfu :使用LFU算法移除key,只对设置了过期时间的Key进行淘汰。。
allkeys-lfu :在所有集合key中,使用LFU算法移除key。
volatile-random :只对设置了过期时间的Key进行淘汰,淘汰算法为随机淘汰。
allkeys-random: 在所有集合key中,移除随机的key。
volatile-ttl: 移除那些TTL值最小的key,即那些最近要过期的key。
noeviction: 永不删除key,针对写操作,达到最大内存再进行数据装入时会返回错误。

设置样本数量-maxmemory-samples

持久化

AOF 持久化

Redis默认情况是不开启AOF的
重启时再重新执行AOF文件中的命令来恢复数据。它主要解决数据持久化的实时性问题。
AOF是执行完命令后才记录日志的。为什么不先记录日志再执行命令呢?
这是因为Redis在向AOF记录日志时,不会先对这些命令进行语法检查,如果先记录日志再执行命令,日志中可能记录了错误的命令,Redis使用日志回复数据时,可能会出错。正是因为执行完命令后才记录日志,所以不会阻塞当前的写操作。但是会存在两个风险:

  1. 更执行完命令还没记录日志时,宕机了会导致数据丢失
  2. AOF不会阻塞当前命令,但是可能会阻塞下一个操作。

这两个风险最好的解决方案是折中妙用AOF机制的三种写回策略 appendfsync:
always,同步写回,每个子命令执行完,都立即将日志写回磁盘。
everysec,每个命令执行完,只是先把日志写到AOF内存缓冲区,每隔一秒同步到磁盘。
no:只是先把日志写到AOF内存缓冲区,有操作系统去决定何时写入磁盘。

AOF优点:

数据保证:我们可以设置fsync策略,一般默认是everysec,也可以设置每次写入追加,所以即使服务死掉了,也最多丢失一秒数据
自动缩小:当aof文件大小到达一定程度的时候,后台会自动的去执行aof重写,此过程不会影响主进程,重写完成后,新的写入将会写到新的aof中,旧的就会被删除掉。但是此条如果拿出来对比rdb的话还是没有必要算成优点,只是官网显示成优点而已。

RDB持久化

RDB,就是把内存数据以快照的形式保存到磁盘上。和AOF相比,它记录的是某一时刻的数据,并不是操作。
RDB持久化,是指在指定的时间间隔内,执行指定次数的写操作,将内存中的数据集快照写入磁盘中,它是Redis默认的持久化方式。执行完操作后,在指定目录下会生成一个dump.rdb文件,Redis 重启的时候,通过加载dump.rdb文件来恢复数据。

rdb的优点:

体积更小:相同的数据量rdb数据比aof的小,因为rdb是紧凑型文件。
恢复更快:因为rdb是数据的快照,基本上就是数据的复制,不用重新读取再写入内存。
性能更高:父进程在保存rdb时候只需要fork一个子进程,无需父进程的进行其他io操作,也保证了服务器的性能。
rdb的缺点:

故障丢失:因为rdb是全量的,我们一般是使用shell脚本实现30分钟或者1小时或者每天对redis进行rdb备份,(注,也可以是用自带的策略),但是最少也要5分钟进行一次的备份,所以当服务死掉后,最少也要丢失5分钟的数据。
耐久性差:相对aof的异步策略来说,因为rdb的复制是全量的,即使是fork的子进程来进行备份,当数据量很大的时候对磁盘的消耗也是不可忽视的,尤其在访问量很高的时候,fork的时间也会延长,导致cpu吃紧,耐久性相对较差。

如何选择RDB和AOF

如果数据不能丢失,RDB和AOF混用
如果只作为缓存使用,可以承受几分钟的数据丢失的话,可以只使用RDB。
如果只使用AOF,优先使用everysec的写回策略。

AOF数据的恢复
通过AOF文件恢复数据1. 使用redis的bgsave命令先备份一份当前的Redis服务端状态redis> BGSAVE2. 用redis-cli命令指定AOF文件并将其还原到Redis数据库中redis-cli -p 6379 –aof-rewrite rewrite.aof上面命令中,port指定Redis服务端口,aof-rewrite指定AOF文件,rewrite.aof指定需要恢复的AOF文件名。3. 使用redis-cli命令进行AOF文件重写redis-cli -p 6379 –aof-rewrite-incremental rewrite.aof上面命令中,port指定Redis服务端口,aof-rewrite-incremental指定AOF文件,rewrite.aof指定需要恢复的AOF文件名。4. 重新启动Redis服务使用redis-cli 重新启动Redis服务:redis-cli -p 6379 –aof-load loader.aof最后,通过Redis服务重启指令 loader.aof 重新加载AOF文件。通过以上步骤,可以快速实现Redis AOF文件的恢复。在Redis数据丢失的情况下,恢复AOF文件是很有效的手段,能够快速恢复丢失的数据。

恢复RDB的数据

redis-cli --rdb rdbfile

redis分布式

redis不同的节点保存不同的数据

redis有四种模式

单机模式、主从模式、哨兵模式、集群模式
在配置主从复制之前,我们需要确保两个Redis主服务器的配置文件(redis.conf)中的以下参数正确设置:

bind: 设置Redis服务器绑定的IP地址;
port: 设置Redis服务器监听的端口号;
daemonize: 将Redis服务器以守护进程方式运行;
pidfile: 设置Redis服务器守护进程的PID文件的路径;
logfile: 设置Redis服务器日志文件的路径;
dbfilename: 设置Redis服务器持久化数据文件的名称。

双主设置
在配置文件中,我们需要将其中一个Redis主服务器设置为另一个Redis主服务器的从服务器。具体操作如下:打开第一个Redis主服务器的配置文件(redis.conf),将以下参数的值修改如下:
slaveof 192.168.0.2 6380
该配置将第一个Redis主服务器设置为第二个Redis主服务器的从服务器。打开第二个Redis主服务器的配置文件(redis.conf),将以下参数的值修改如下:
slaveof 192.168.0.1 6379
该配置将第二个Redis主服务器设置为第一个Redis主服务器的从服务器。
配置主从复制后,我们需要在两个Redis主服务器上分别执行以下命令以启用双向同步:在第一个Redis主服务器上执行以下命令:
redis-cli -h 192.168.0.1 -p 6379
这将连接到第一个Redis主服务器。slaveof no one
这将将第一个Redis主服务器从从服务器转变为主服务器。在第二个Redis主服务器上执行以下命令:
redis-cli -h 192.168.0.2 -p 6380
这将连接到第二个Redis主服务器。slaveof no one
这将将第二个Redis主服务器从从服务器转变为主服务器。

哨兵模式(哨兵要奇数个,建议3节点起步)

Redis_S1 Master 192.168.205.1
Redis_S2 slaves 192.168.205.2
Redis_S3 slaves 192.168.205.3

vim /etc/redis-sentinel.confsentinel monitor mymaster 192.168.205.1 6379 2
# 配置监控主节点的IP、端口号、2代表多少个Sentinel实例认为主服务器不可用,才会触发自动故障转移。sentinel auth-pass mymaster pass123
# 主节点的密码sentinel down-after-milliseconds mymaster 10000
# 指定Sentinel在多长时间内未收到来自主服务器的回复后,将主服务器标记为主观下线。
# 单位为毫秒sentinel parallel-syncs mymaster 1
# 用于指定在自动故障转移期间,最多可以有多少个从服务器同时对新的主服务器进行同步。
# 为1即可
集群管理

https://blog.csdn.net/weixin_47824895/article/details/129891957

cluster nodes
redis-cli --cluster add-node 192.168.136.172:6392 \
192.168.136.172:6389 --cluster-master-id 74d466622c60f66710da4c3d1cc1e2a0d478add3#添加从节点
redis-cli --cluster add-node new_host:new_port \existing_host:existing_port --cluster-slave --cluster-master-id node_id

这篇关于【星海随笔】redis 解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/403993

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如