Pytorch D2L Subplots方法对画图、图片处理

2023-11-21 08:01

本文主要是介绍Pytorch D2L Subplots方法对画图、图片处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题代码

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""绘制图像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 图片张量
ax.imshow(img.numpy())
else:
# PIL图片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes

d2l.plt.subplots返回值

plt.subplots是matplotlib库中的一个函数,用于创建一个新的Figure对象,并在其中创建一个或多个子图(subplot)。
它的基本用法是:

fig, ax = plt.subplots(nrows=1, ncols=1, **kwargs)
其中,nrowsncols分别指定了子图的行数和列数。如果只想创建一个子图,可以省略其中一个参数。

返回值fig是Figure对象ax则是一个或多个子图的Axes对象(如果只创建了一个子图,则返回一个单独的Axes对象;如果创建了多个子图,则返回一个Axes对象列表)。

kwargs是可选的关键字参数,用于设置Figure和子图的属性。例如,可以使用figsize参数设置Figure的大小,使用sharexsharey参数来共享子图的x轴和y轴。

axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)

解释:

d2l.plt.subplots创建了一个包含多个子图的网格(grid);

num_rows和num_cols分别指定了网格中子图的行数和列数;
figsize指定了整个图像的尺寸,即包含所有子图的画布大小。
返回值axes是一个由网格的子图对象组成的NumPy数组。
我们可以使用它来访问、控制和绘制每个子图。

举例说明:

axes是一个由子图对象组成的NumPy数组,它可以用来访问、控制和绘制每个子图。具体来说,axes是一个大小为(num_rows, num_cols)的NumPy数组,其中axes[i, j]表示第 i + 1 i+1 i+1行和第 j + 1 j+1 j+1列的子图对象。

例如,如果我们使用以下代码创建一个包含 2 2 2行 3 3 3列子图的网格:


import matplotlib.pyplot as pltimport d2lfigsize = (6, 4)num_rows, num_cols = 2, 3axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)那么`axes`将是一个大小为$(2, 3)$的NumPy数组,可以通过索引来访问每个子图对象。例如,我们可以在第$1$行第$2$列的子图中绘制一条直线:axes[0, 1].plot([0, 1], [0, 1])

或者我们可以在所有子图中添加一个标题:


for i in range(num_rows):for j in range(num_cols):axes[i, j].set_title(f'Subplot ({i+1}, {j+1})')

原链接

subplot()、subplots()

subplot()、subplots()在实际过程中,先创建了一个figure画窗,然后通过调用add_subplot()来向画窗中各个分块添加坐标区,其差别在于是分次添加(subplot())还是一次性添加(subplots())

在这里插入图片描述
3.plt.subplots()
语法格式:

matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False,
sharey=False, squeeze=True,subplot_kw=None, gridspec_kw=None, **fig_kw)
-nrows:默认为 1,设置图表的行数。
-ncols:默认为 1,设置图表的列数。
-sharex、sharey:设置 x、y 轴是否共享属性,默认为 false,可设置为 ‘none’、‘all’、‘row’ 或 ‘col’。 False 或 none 每个子图的 x 轴或 y 轴都是独立的,True 或 ‘all’:所有子图共享 x 轴或 y 轴,‘row’ 设置每个子图行共享一个 x 轴或 y 轴,‘col’:设置每个子图列共享一个 x 轴或 y 轴。

import matplotlib.pyplot as plt
import numpy as np# 创建一些测试数据 
x = np.linspace(0,100, 4)
y = np.sin(x**2)# 创建一个画像和子图 -- 图1
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')# 创建两个子图 -- 图2
#如图figure2,四个子图中上两幅图并无x轴(与下子图共享),因为已设置sharex=True
#若改为sharey=True,可观察到四副子图中右两幅无y轴(即与左子图共享)
f, ([ax1, ax2],[ax3,ax4]) = plt.subplots(2, 2, sharex=True)
ax1.plot(x, y)
ax1.set_title('Sharing x axis')
ax2.scatter(x, y)
ax3.scatter(x, y)
ax4.scatter(x, y)# 创建四个子图 -- 图3
#通过对subplot_kw传入参数,生成关于极坐标系的子图
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)plt.show()

在这里插入图片描述

文章来源地址

python内置函数:zip()函数搭配enumerate函数使用,用在for循环中

简介enumerate()

enumerate()函数是Python的内置函数,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),可以利用enumerate函数同时获取对象的索引和值。

x=np.arange(0,100,10)
for i in enumerate(x):index = i[0]; xval = i[1]print(index,xval)
0 0
1 10
2 20
3 30
4 40
5 50
6 60
7 70
8 80
9 90
简介zip()

zip函数是Python的内置函数,它用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象(即对多个序列进行并行迭代)。如果各个迭代器元素个数不一致,zip()函数则在最短序列“用完”时就会停止。

sz = np.arange(1,100,10)
sx = np.arange(1,10,1)
for index, (szi, sxi) in enumerate(zip(sz, sx)):print(index,szi,sxi)
0 1 1
1 11 2
2 21 3
3 31 4
4 41 5
5 51 6
6 61 7
7 71 8
8 81 9

transforms.Compose(trans)

Compose()类会将transforms列表里面的transform操作进行遍历。实现的代码很简单:

## 这里对源码进行了部分截取。
def __call__(self, img):for t in self.transforms:	img = t(img)return img

pytorch通过深度学习进行预处理图片,离不开transforms.Compose(),torchvision.datasets.ImageFolder(),torch.utils.data.DataLoader()的用法。

源自于文章

1.Transform.Compose()详解

导入相应的库


import torch
import torchvision
import matplotlib.pyplot as plt
from torch.utils import data
from torchvision import datasets,transforms
from PIL import Image
%matplotlib inline

在这里插入图片描述

class torchvision.transforms.Compose(transforms):# Composes several transforms together.# Parameters: transforms (list of Transform objects) – list of transforms to compose.Example # 可以看出Compose里面的参数实际上就是个列表,而这个列表里面的元素就是你想要执行的transform操作。
>>> transforms.Compose([
>>>     transforms.CenterCrop(10),
>>>     transforms.ToTensor(),])

展示原始图片

pic = "./train/Chihuahua/n02085620_10074.jpg"img = plt.imread(pic)
plt.imshow(img)

定义图片预处理的对象。

traintransform = transforms.Compose([transforms.RandomRotation(20),           # 随机旋转20°transforms.ColorJitter(brightness=0.1), #随机改变图像的亮度对比度和饱和度transforms.Resize([150,150]),          # 转换为需要的尺寸transforms.ToTensor(),                #convert a PIL image to tensor (H*W*C)])
img1 = Image.fromarray(img)   #将numpy对象的img转换为PIL格式
img2 = traintransform(img1)# 图像预处理tensor
img3 = transforms.ToPILImage()(img2)#转换为PIL进行展示
plt.imshow(img3)

展示处理之后的图片,可以看出,图片旋转了20°,并且大小转换为(150,150)

附上——transforms中的函数如何使用?

# Resize:把给定的图片resize到given size
# Normalize:Normalized an tensor image with mean and standard deviation
# ToTensor:convert a PIL image to tensor (H*W*C) in range [0,255] to a torch.Tensor(C*H*W) in the range [0.0,1.0]
# ToPILImage: convert a tensor to PIL image
# Scale:目前已经不用了,推荐用Resize
# CenterCrop:在图片的中间区域进行裁剪
# RandomCrop:在一个随机的位置进行裁剪
# RandomHorizontalFlip:以0.5的概率水平翻转给定的PIL图像
# RandomVerticalFlip:以0.5的概率竖直翻转给定的PIL图像
# RandomResizedCrop:将PIL图像裁剪成任意大小和纵横比
# Grayscale:将图像转换为灰度图像
# RandomGrayscale:将图像以一定的概率转换为灰度图像
# FiceCrop:把图像裁剪为四个角和一个中心
# TenCrop
# Pad:填充
# ColorJitter:随机改变图像的亮度对比度和饱和度。

这篇关于Pytorch D2L Subplots方法对画图、图片处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/400981

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行