庖丁解牛:NIO核心概念与机制详解 06 _ 连网和异步 I/O

2023-11-20 23:28

本文主要是介绍庖丁解牛:NIO核心概念与机制详解 06 _ 连网和异步 I/O,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Pre
  • 概述
  • 异步 I/O
  • Selectors
  • 打开一个 ServerSocketChannel
  • 选择键
  • 内部循环
  • 监听新连接
  • 接受新的连接
  • 删除处理过的 SelectionKey
  • 传入的 I/O
  • 回到主循环

在这里插入图片描述


Pre

庖丁解牛:NIO核心概念与机制详解 01

庖丁解牛:NIO核心概念与机制详解 02 _ 缓冲区的细节实现

庖丁解牛:NIO核心概念与机制详解 03 _ 缓冲区分配、包装和分片

庖丁解牛:NIO核心概念与机制详解 04 _ 分散和聚集

庖丁解牛:NIO核心概念与机制详解 05 _ 文件锁定


概述

在 Java NIO 中,连网操作与其他操作一样,依赖于通道(Channel)和缓冲区(Buffer)。通道是用于读取和写入数据的途径,而缓冲区则用于暂存数据。

与传统的同步 I/O 不同,Java NIO 中的通道操作是非阻塞的,这意味着在发起 IO 请求后,进程可以继续执行其他任务,而不需要等待 IO 操作完成。当 IO 操作完成后,进程会收到通知,此时再进行相应的处理。


异步 I/O

异步 I/O 是一种 没有阻塞地 读写数据的方法。通常,在代码进行 read() 调用时,代码会阻塞直至有可供读取的数据。同样, write() 调用将会阻塞直至数据能够写入。

另一方面,异步 I/O 调用不会阻塞。相反,你将注册对特定 I/O 事件的兴趣 ― 可读的数据的到达、新的套接字连接,等等,而在发生这样的事件时,系统将会告诉你。

异步 I/O 的一个优势在于,它允许你同时根据大量的输入和输出执行 I/O。同步程序常常要求助于轮询,或者创建许许多多的线程以处理大量的连接。使用异步 I/O,你可以监听任何数量的通道上的事件,不用轮询,也不用额外的线程。

来看个Demo

这个程序就像传统的 echo server,它接受网络连接并向它们回响它们可能发送的数据。不过它有一个附加的特性,就是它能同时监听多个端口,并处理来自所有这些端口的连接。并且它只在单个线程中完成所有这些工作。


import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;/*** @author 小工匠* @version 1.0* @mark: show me the code , change the world*/
public class MultiPortEcho {private int ports[];private ByteBuffer echoBuffer = ByteBuffer.allocate(1024);public MultiPortEcho(int ports[]) throws IOException {this.ports = ports;go();}private void go() throws IOException {// Create a new selectorSelector selector = Selector.open();// Open a listener on each port, and register each one// with the selectorfor (int i = 0; i < ports.length; ++i) {ServerSocketChannel ssc = ServerSocketChannel.open();ssc.configureBlocking(false);ServerSocket ss = ssc.socket();InetSocketAddress address = new InetSocketAddress(ports[i]);ss.bind(address);SelectionKey key = ssc.register(selector, SelectionKey.OP_ACCEPT);System.out.println("Going to listen on " + ports[i]);}while (true) {int num = selector.select();Set selectedKeys = selector.selectedKeys();Iterator it = selectedKeys.iterator();while (it.hasNext()) {SelectionKey key = (SelectionKey) it.next();if ((key.readyOps() & SelectionKey.OP_ACCEPT)== SelectionKey.OP_ACCEPT) {// Accept the new connectionServerSocketChannel ssc = (ServerSocketChannel) key.channel();SocketChannel sc = ssc.accept();sc.configureBlocking(false);// Add the new connection to the selectorSelectionKey newKey = sc.register(selector, SelectionKey.OP_READ);it.remove();System.out.println("Got connection from " + sc);} else if ((key.readyOps() & SelectionKey.OP_READ)== SelectionKey.OP_READ) {// Read the dataSocketChannel sc = (SocketChannel) key.channel();// Echo dataint bytesEchoed = 0;while (true) {echoBuffer.clear();int r = sc.read(echoBuffer);if (r <= 0) {break;}echoBuffer.flip();sc.write(echoBuffer);bytesEchoed += r;}System.out.println("Echoed " + bytesEchoed + " from " + sc);it.remove();}}//System.out.println( "going to clear" );
//      selectedKeys.clear();
//System.out.println( "cleared" );}}public static void main(String args[]) throws Exception {if (args.length <= 0) {System.err.println("Usage: java MultiPortEcho port [port port ...]");System.exit(1);}int ports[] = new int[args.length];for (int i = 0; i < args.length; ++i) {ports[i] = Integer.parseInt(args[i]);}new MultiPortEcho(ports);}
}

Selectors

我们来基于 MultiPortEcho 的源代码中的 go() 方法的实现,因此应该看一下源代码,以便对所发生的事情有个更全面的了解。

异步 I/O 中的核心对象名为 SelectorSelector 就是你注册对各种 I/O 事件的兴趣的地方,而且当那些事件发生时,就是这个对象告诉你所发生的事件。

所以,我们需要做的第一件事就是创建一个 Selector

// Create a new selector
Selector selector = Selector.open();

然后,我们将对不同的通道对象调用 register() 方法,以便注册我们对这些对象中发生的 I/O 事件的兴趣。register() 的第一个参数总是这个 Selector。


打开一个 ServerSocketChannel

为了接收连接,我们需要一个 ServerSocketChannel。事实上,我们要监听的每一个端口都需要有一个 ServerSocketChannel 。

对于每一个端口,我们打开一个 ServerSocketChannel,如下所示:

ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking( false );ServerSocket ss = ssc.socket();
InetSocketAddress address = new InetSocketAddress( ports[ii] );
ss.bind( address );

第一行创建一个新的 ServerSocketChannel ,最后三行将它绑定到给定的端口。
第二行将 ServerSocketChannel 设置为 非阻塞的 。我们必须对每一个要使用的套接字通道调用这个方法,否则异步 I/O 就不能工作。


选择键

下一步是将新打开的 ServerSocketChannels 注册到 Selector上。为此我们使用 ServerSocketChannel.register() 方法,如下所示:

SelectionKey key = ssc.register( selector, SelectionKey.OP_ACCEPT );

register() 的第一个参数总是这个 Selector
第二个参数是 OP_ACCEPT,这里它指定我们想要监听 accept 事件,也就是在新的连接建立时所发生的事件。这是适用于 ServerSocketChannel 的唯一事件类型。

请注意对 register() 的调用的返回值。 SelectionKey 代表这个通道在此 Selector 上的这个注册。当某个 Selector 通知你某个传入事件时,它是通过提供对应于该事件的 SelectionKey 来进行的。SelectionKey 还可以用于取消通道的注册。


内部循环

现在已经注册了我们对一些 I/O 事件的兴趣,下面将进入主循环。使用 Selectors 的几乎每个程序都像下面这样使用内部循环:

int num = selector.select();Set selectedKeys = selector.selectedKeys();
Iterator it = selectedKeys.iterator();while (it.hasNext()) {SelectionKey key = (SelectionKey)it.next();// ... deal with I/O event ...
}

首先,我们调用 Selectorselect() 方法。这个方法会阻塞,直到至少有一个已注册的事件发生。当一个或者更多的事件发生时, select() 方法将返回所发生的事件的数量。

接下来,我们调用 SelectorselectedKeys() 方法,它返回发生了事件的 SelectionKey 对象的一个 集合 。

我们通过迭代 SelectionKeys 并依次处理每个 SelectionKey 来处理事件。对于每一个 SelectionKey,你必须确定发生的是什么 I/O 事件,以及这个事件影响哪些 I/O 对象。


监听新连接

程序执行到这里,我们仅注册了 ServerSocketChannel,并且仅注册它们“接收”事件。为确认这一点,我们对 SelectionKey 调用 readyOps() 方法,并检查发生了什么类型的事件:

if ((key.readyOps() & SelectionKey.OP_ACCEPT)== SelectionKey.OP_ACCEPT) {// Accept the new connection// ...
}

可以肯定地说, readOps() 方法告诉我们该事件是新的连接。


接受新的连接

因为我们知道这个服务器套接字上有一个传入连接在等待,所以可以安全地接受它;也就是说,不用担心 accept() 操作会阻塞:

ServerSocketChannel ssc = (ServerSocketChannel)key.channel();
SocketChannel sc = ssc.accept();

下一步是将新连接的 SocketChannel 配置为非阻塞的。而且由于接受这个连接的目的是为了读取来自套接字的数据,所以我们还必须将 SocketChannel 注册到 Selector上,如下所示:

sc.configureBlocking( false );
SelectionKey newKey = sc.register( selector, SelectionKey.OP_READ );

注意我们使用 register()OP_READ 参数,将 SocketChannel 注册用于 读取 而不是 接受 新连接。


删除处理过的 SelectionKey

在处理 SelectionKey 之后,我们几乎可以返回主循环了。但是我们必须首先将处理过的 SelectionKey 从选定的键集合中删除。如果我们没有删除处理过的键,那么它仍然会在主集合中以一个激活的键出现,这会导致我们尝试再次处理它。我们调用迭代器的 remove() 方法来删除处理过的 SelectionKey

it.remove();

现在我们可以返回主循环并接受从一个套接字中传入的数据(或者一个传入的 I/O 事件)了。


传入的 I/O

当来自一个套接字的数据到达时,它会触发一个 I/O 事件。这会导致在主循环中调用 Selector.select(),并返回一个或者多个 I/O 事件。这一次, SelectionKey 将被标记为 OP_READ 事件,如下所示:

} else if ((key.readyOps() & SelectionKey.OP_READ)== SelectionKey.OP_READ) {// Read the dataSocketChannel sc = (SocketChannel)key.channel();// ...
}

与以前一样,我们取得发生 I/O 事件的通道并处理它。在本例中,由于这是一个 echo server,我们只希望从套接字中读取数据并马上将它发送回去。


回到主循环

每次返回主循环,我们都要调用 selectSelector()方法,并取得一组 SelectionKey。每个键代表一个 I/O 事件。我们处理事件,从选定的键集中删除 SelectionKey,然后返回主循环的顶部。

这个程序有点过于简单,因为它的目的只是展示异步 I/O 所涉及的技术。在现实的应用程序中,我们需要通过将通道从 Selector 中删除来处理关闭的通道。而且我们可能要使用多个线程。这个程序可以仅使用一个线程,因为它只是一个演示,但是在现实场景中,创建一个线程池来负责 I/O 事件处理中的耗时部分会更有意义。

在这里插入图片描述

这篇关于庖丁解牛:NIO核心概念与机制详解 06 _ 连网和异步 I/O的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/398196

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo