第六章 图(下)【图的应用,重难点】

2023-11-20 22:15
文章标签 应用 第六章 重难点

本文主要是介绍第六章 图(下)【图的应用,重难点】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 最小生成树

 1.1 最小生成树的概念

  • 生成树:连通图的生成树是包含图中全部顶点的一个极小连通子图。 若图中顶点数为 n,则它的生成树含有 n-1 条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。

  • 最⼩⽣成树(最⼩代价树):对于一个带权连通无向图G =(V,E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(Minimum-Spannino-Tree,MST).。
  • 最小生成树可能有多个,但边的权值之和总是唯一且最小的。
  • 最小生成树的边数 =顶点数 -1。砍掉一条则不连通,增加一条边则会出现回路。
  • 如果一个连通图本身就是一棵树,则其最小生成树就是它本身。
  • 只有连通图才有生成树,非连通图只有生成森林。

 求最小生成树的两种方法

1.2 Prim算法(普里姆)

从某一个顶点开始构建生成树;每次将代价最小的新顶点纳入生成树,直到所有顶点都纳入为止。时间复杂度: O(V2)适合用于边稠密图。核心思想:贪心算法

同一顶点开始生成的最小生成树可能也不一样,但是最小代价是一样的

 

算法实现:

Prim 算法的实现思想:

1.初始:从V0开始,标记各节点是 否已加⼊树isJoin,各节点加⼊树 的最低代价,lowCost

2.  第1轮:循环遍历所有个结点,找 到lowCost最低的,且还没加⼊树 的顶点将该顶点加入树,再次循环遍历,更新还没加⼊的 各个顶点的lowCost值

3. 重复1,2,从V0开始,总共需要 n-1 轮处理,每⼀轮处理:循环遍历所有个结 点,找到lowCost最低的,且还没 加⼊树的顶点。 再次循环遍历,更新还没加⼊的 各个顶点的lowCost值,

每⼀轮时间复 杂度O(2n),总时间复杂度 O(n2),即O(|V|2)

void Prim(G, T)
{// T为空;// U = {w};while((V-U)! = NULL){设(u,v)为让u属于U,v属于(V-U)对最短边T = T U {(u,v)};    //边入树U = U U {v};        //顶点入树}
}//辅助数组:
isJoin[vexNum];    //标记各节点是否已加入树
lowCost[vexNum];    //各节点加入树的最小代价 != 权值,每次并入新节点后都需要更新

1.3 Kruskal算法(克鲁斯卡尔)

每次选择一条权值最小的边,使这条边的两头连通(原本已经连通的就不选)直到所有结点都连通。时间复杂度: O(|E|log|E|)适合用于边稀疏图。

算法实现:

 1. 初始:将各条边按权值排序

2.第1轮:检查第1条边的两个顶点是否 连通(是否属于同⼀个集合) 不连通,则连起来

2.第i轮:检查第i条边的两个顶点是否 连通(是否属于同⼀个集合)不连通,则连起来,已连通,则跳过

共执⾏ e 轮,每轮判断两个顶点是 否属于同⼀集合,需要 O(log2e) 总时间复杂度 O(elog2e)

void Kruskal(v, T)
{T = v;numS = n;    //连通分量数while(numS>1){从E中选取权值最小的边(u,v);if(v和u属于不同连通分量){T = T U {(v,u)};    //边入树numS--;}}
}

2. 最短路径问题

2.1 无权图的单源最短路径问题——BFS算法

 ⽆权图可以视为⼀种特殊的带权图,只是每条边的权值都为1

从2出发寻找无权图的单源最短路径

算法实现:

使用 BFS算法求无权图的最短路径问题,需要使用三个数组

  • d[]数组用于记录顶点 u 到其他顶点的最短路径。
  • path[]数组用于记录最短路径从那个顶点过来。

  • visited[]数组用于记录是否被访问过。

在visit⼀个顶点时,修改其最短路径⻓度 d[ ] 并在 path[ ] 记录前驱结点

代码实现:

#define MAX_LENGTH 2147483647			//地图中最大距离,表示正无穷// 求顶点u到其他顶点的最短路径
void BFS_MIN_Disrance(Graph G,int u){for(i=0; i<G.vexnum; i++){visited[i]=FALSE;				//初始化访问标记数组d[i]=MAX_LENGTH;				//初始化路径长度path[i]=-1;						//初始化最短路径记录}InitQueue(Q);						//初始化辅助队列d[u]=0;visites[u]=TRUE;EnQueue(Q,u);while(!isEmpty[Q]){					//BFS算法主过程DeQueue(Q,u);					//队头元素出队并赋给ufor(w=FirstNeighbor(G,u);w>=0;w=NextNeighbor(G,u,w)){if(!visited[w]){d[w]=d[u]+1;path[w]=u;visited[w]=TRUE;EnQueue(Q,w);			//顶点w入队}}}
}

2.2 带权图的单源最短路径问题——Dijkstra算法

相关概念背景

带权路径⻓度——当图是带权图时,⼀条路径上所有边的权值之和,称为该路径的带权路径⻓度

  1. BFS算法的局限性:BFS算法求单源最短路径只适⽤于⽆权图,或所有边的权值都相同的图。
  2. Dijkstra算法能够很好的处理带权图的单源最短路径问题,但不适⽤于有负权值的带权图。

算法实现:

使用 Dijkstra算法求最短路径问题,需要使用三个数组:

  • final[]数组用于标记各顶点是否已找到最短路径。
  • dist[]数组用于记录各顶点到源顶点的最短路径长度。
  • path[]数组用于记录各顶点现在最短路径上的前驱。

 1. 初始:从V0开始,初始化三个数组信息

2. 第1轮:循环遍历所有结点,找到还没确定最短 路径,且dist 最⼩的顶点Vi,令final[i]=ture,检查所有邻接⾃ Vi 的顶点,若其 final 值为false, 则更新 dist 和 path 信息

 ​​​​​​

3.重复过程2,n-1轮处理,直到所有顶点的final 值为true.并更新完成

4.  使⽤数组信息

代码实现:

#define MAX_LENGTH = 2147483647;// 求顶点u到其他顶点的最短路径
void BFS_MIN_Disrance(Graph G,int u){for(int i=0; i<G.vexnum; i++){		//初始化数组final[i]=FALSE;dist[i]=G.edge[u][i];if(G.edge[u][i]==MAX_LENGTH || G.edge[u][i] == 0)path[i]=-1;elsepath[i]=u;final[u]=TREE;}for(int i=0; i<G.vexnum; i++){int MIN=MAX_LENGTH;int v;// 循环遍历所有结点,找到还没确定最短路径,且dist最⼩的顶点vfor(int j=0; j<G.vexnum; j++){if(final[j]!=TREE && dist[j]<MIN){MIN = dist[j];v = j;}}final[v]=TREE;// 检查所有邻接⾃v的顶点路径长度是否最短for(int j=0; j<G.vexnum; j++){if(final[j]!=TREE && dist[j]>dist[v]+G.edge[v][j]){dist[j] = dist[v]+G.edge[v][j];path[j] = v;}}}
}

 时间复杂度: O(n2)即O(|V|2)

2.3 各顶点间的最短路径问题——Floyd算法 

2.3.1 Floyd算法基本思想:

求出每⼀对顶点之间的最短路径,使⽤动态规划思想,将问题的求解分为多个阶段。

 

2.3.2 Floyd算法应用范围

可以⽤于负权值带权图,但是不能解决带有“负权回路”的图(有负权值的边组成回路),这种图有可能没有最短路径。

 算法实现:

  1. Floyd算法使用到两个矩阵:

    1. dist[][]:目前各顶点间的最短路径。
    2. path[][]:两个顶点之间的中转点。

 

递推一个n阶方阵序列A^{-1}A^{0},...,A^{k},...,A^{n-1},其中A^{k}[i][j]表示从顶点vi到vj的长度,k表示绕行第k个顶点的运算步骤,利用path^{k}记录节点的中转情况。 

 步骤:①初始时若v0到vi之间有边,则记录其最短路径为该边权值,若不存在则记∞

            ②尝试允许经过v0顶点中转,更新顶点间最短路径

            ③依此尝试允许经过v1,v2,...,vk顶点中转,并不断更新最短路径,,直到允许v(n-1)顶点都经过中转,方阵 [i][j] = Min{[i][j] , [i][k]+[k][j]}

            ④经过n次迭代,最终[i][j]就是vi到vj的最短路径长度

 代码实现:

//初始化矩阵A和path
...
for(int k=0; k<n; k++)
{for(int i=0; i<n; i++){for(int j=0; j<n; j++){if(A[i][j]>A[i][k]+A[k][j]){A[i][j] = A[i][k]+A[k][j];    //更新最短路径长度path[i][j] = k;               //中转点}}}
}

算法分析:时间复杂度——O(|V|^{3}),空间复杂度——O(|V|^{2})

这篇关于第六章 图(下)【图的应用,重难点】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397813

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景