【形式化方法】Part B: LA/LP Applications(子集和问题)

2023-11-20 16:10

本文主要是介绍【形式化方法】Part B: LA/LP Applications(子集和问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本节中,我们将研究如何利用LA/LP理论,借助Z3求解器建立模型和解决问题。

具体地说,我们将解决几个非常难的问题,这里的“难”是指这些问题都是np完全的,也就是说,对于这些问题一般没有已知的多项式算法。

但是,您很快就会发现使用LA/LP求解器(如Z3)解决这些问题是多么容易(和多么有趣)。一般来说,您将认识到基于求解器的问题解决策略的威力和简单性。

我们要解决的np完全问题是(其中一些已经在我们之前的讲座中讨论过):

  1. 子集和问题
  2. N-queen问题
  3. 背包问题
  4. 线性回归

请注意,这并不是基于SMT的求解器可以处理的问题的完整列表,在您学习了此技术之后,还鼓励您尝试解决其他np完全问题。

子集和问题

子集问题是一个著名的可满足性问题:给定一个多集(一个多集就像一个普通的集合,除了元素可以被重复之外),我们应该确定一个非空子集T (S),这样

 ,在集合中找到子集,使得这个子集的和为0比如这里有个集合:{-7,-3,-2,7000,5,9}。显然这里有个解:{-3,-2,5}

这个问题是np完全的,关于子集问题的更多背景信息,请参考这篇文章:子集和问题

解释: 我们要找到一个集合中的某个子集相加为0,只需要构造一个X = [x_0,x_1,...x_n]列表。比如在这个集合中{-7,-3,-2,7000,5,9},对应构造的列表是X  =[x_0,x_1,x_2,x_3,x_4,x_5]

需满足条件①x_0 + x_1 + x_2 + x_3 + x_4 + x_5 !=0  (因为如果全为0,条件②就永远成立)

                 ②(-7*x_0) + (-3*x_1) + (-2*x_2) + (7000*x_3) + (5*x_4) + (9*x_5) = 0 

能找到满足条件①②的结果就是:x_1 = 0,x_2 = 1,x_3 = 1,x_4 = 1,x_5 = 0,  这样,我们就知道索引为2,3,4对应的值,即[-3, -2, 5] 这个子集之和为0.问题解决。

Exercise 9:阅读subset_sum.py Python文件中的代码,完成subset_sum_la()方法,该方法使用0-1 ILA解决子集和问题。基本思想是为目标集合T中的每个数字创建标志F,我们只需要添加约束:其中N是目标集合S的长度(即实现上述问题的代码)

# LA-based solution
def subset_sum_la(target_set: list):solver = Solver()flags = [Int(f"x_{i}") for i in range(len(target_set))]# 0-1 ILAfor flag in flags:solver.add(Or(flag == 0, flag == 1))# print(flags)# the selected set must be non-emptysolver.add(sum(flags) != 0)# @exercise 9: please fill in the missing code to add# the following constraint into the solver.#       sum_i flags[i]*target_set[i] = 0# raise Todo("exercise 9: please fill in the missing code.")i = 0con = []for t in target_set:con.append(t * flags[i])i = i+1solver.add(sum(con) == 0)# print(con)if __name__ == '__main__':# a small test casesmall_set = [-7, -3, -2, 9000, 5, 8]print(subset_sum_la(small_set))

输出结果:  可满足,并且找到子集 [-3, -2, 5]

 

Exercise 10:subset_sum.py Python文件中的代码,subset_sum_dp()方法已经提供了基于动态编程(DP)的解决方案。并给出了另一种基于拉普拉斯算子的subset_sum_la_opt()方法,该方法利用Z3伪布尔约束条件进行优化。试着比较DP、LA算法和优化的LA算法的效率,通过将max_nums的值更改为其他值,例如200,2000,20000,…你的观察结果是什么?从这些数据中你能得出什么结论?

# LA 优化算法
def subset_sum_la_opt(target_set: list):solver = Solver()# enable Pseudo-Boolean solver# to get more information about Pseudo-Boolean constraints# refer to https://theory.stanford.edu/~nikolaj/programmingz3.htmlsolver.set("sat.pb.solver", "solver")# use Pseudo-Boolean constraints for each flagflags = [Bool(f"x_{i}") for i in range(len(target_set))]#solver.add(AtLeast(flags + [1]))# the selected set must be non-emptysolver.add(PbGe([(flags[i], 1) for i in range(len(target_set))], 1))# selected set must sum to zerosolver.add(PbEq([(flags[i], target_set[i]) for i in range(len(target_set))], 0))start = time.time()result = solver.check()print(f"time used in LA optimized: {(time.time() - start):.6f}s")if result == sat:return True, [target_set[index] for index, flag in enumerate(flags) if solver.model()[flag]]return False, result
# DP算法
def subset_sum_dp(target_set):def subset_sum_dp_do(the_set, target, index):if index == 0:return Falseif target == the_set[index - 1]:return Trueif subset_sum_dp_do(the_set, target, index - 1):return Truereturn subset_sum_dp_do(the_set, target - the_set[index - 1], index - 1)start = time.time()result = subset_sum_dp_do(target_set, 0, len(target_set))print(f"time used in DP: {(time.time() - start):.6f}s")return result
 
def gen_large_test(n):nums = [10000] * nnums[len(nums) - 2] = 1nums[len(nums) - 1] = -1# print(nums)return numsif __name__ == '__main__':# a large test casemax_nums = 20large_set = gen_large_test(max_nums)"""# @exercise 10: compare the efficiency of the DP and theLP algorithm, by changing the value of "max_nums" to othervalues, say, 200, 2000, 20000, 200000, ...what's your observation? What conclusion you can draw from these data?raise Todo("exercise 10: please fill in the missing code.")""""""max_num = 20time used in LA: 0.070020stime used in LA optimized: 0.020002stime used in DP: 0.667767sLA优化算法比LA算法速度快,DP算法速度最慢,到max_num = 200时,DP算法用时更长了。"""print(subset_sum_la(large_set))print(subset_sum_la_opt(large_set))print(subset_sum_dp(large_set))
运行结果:
结论:max_num = 20
time used in LA: 0.070020s
time used in LA optimized: 0.020002s
time used in DP: 0.667767s
LA优化算法比LA算法速度快,DP算法速度最慢,到max_num = 200时,DP算法用时更长了(没有运行下去)。

 

#中科大软院-hbj形式化课程笔记-欢迎留言与私信交流

#随手点赞,我会更开心~~^_^

 

这篇关于【形式化方法】Part B: LA/LP Applications(子集和问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395838

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T