谈谈golang的netpoll原理(一)

2023-11-11 20:48
文章标签 golang 原理 谈谈 netpoll

本文主要是介绍谈谈golang的netpoll原理(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天谈谈golang源码netpoll部分实现的细节和协程阻塞调度原理

epoll原理

epoll是linux环境下i/o多路复用的模型,结合下图简单说明epoll工作原理


上图说明了epoll生成描epoll表的基本流程,生成socket用来绑定和监听新的连接,将该socket放入epoll内核表,然后调用wait等待就绪事件。

当epoll wait返回就绪事件时,判断是否是新的连接,如果是新的连接则将描述符加入epoll表,监听读写事件。如果不是新的连接,说明已建立的连接上有读或写就绪事件,这样我们根据EPOLLOUT或者EPOLLIN进行写或者读操作,上图是echo server的基本原理,实际生产中监听EPOLLIN还是EPOLLOUT根据实际情况而定。以上是单线程下epoll工作原理。

 

golang 网络层如何封装的epoll

golang 网络层封装epoll核心文件在系统文件src/runtime/netpoll.go, 这个文件中调用了不同平台封装的多路复用api,linux环境下epoll封装的文件在src/runtime/netpoll_epoll.go中,windows环境下多路复用模型实现在src/runtime/netpoll_windows.go。golang的思想意在将epoll操作放在runtime包里,而runtime是负责协程调度的功能模块,程序启动后runtime运行时是在单独的线程里,个人认为是MPG模型中M模型,epoll模型管理放在这个单独M中调度,M其实是运行在内核态的,在这个内核态线程不断轮询检测就绪事件,将读写就绪事件抛出,从而触发用户态协程读写调度。而我们常用的read,write,accept等操作其实是在用户态操作的,也就是MPG模型中的G,举个例子当read阻塞时,将该协程挂起,当epoll读就绪事件触发后查找阻塞的协程列表,将该协程激活,用户态G激活后继续读,这样在用户态操作是阻塞的,在内核态其实一直是轮询的,这就是golang将epoll和协程调度结合的原理。

golang 如何实现协程和描述符绑定

golang 在internal/poll/fd_windows.go和internal/poll/fd_unix.go中实现了基本的描述符结构

type netFD struct {pfd poll.FD// immutable until Closefamily      intsotype      intisConnected bool // handshake completed or use of association with peernet         stringladdr       Addrraddr       Addr
}

  netFD中pfd结构如下

type FD struct {// Lock sysfd and serialize access to Read and Write methods.fdmu fdMutex// System file descriptor. Immutable until Close.Sysfd syscall.Handle// Read operation.rop operation// Write operation.wop operation// I/O poller.pd pollDesc// Used to implement pread/pwrite.l sync.Mutex// For console I/O.lastbits       []byte   // first few bytes of the last incomplete rune in last writereaduint16     []uint16 // buffer to hold uint16s obtained with ReadConsolereadbyte       []byte   // buffer to hold decoding of readuint16 from utf16 to utf8readbyteOffset int      // readbyte[readOffset:] is yet to be consumed with file.Read// Semaphore signaled when file is closed.csema uint32skipSyncNotif bool// Whether this is a streaming descriptor, as opposed to a// packet-based descriptor like a UDP socket.IsStream bool// Whether a zero byte read indicates EOF. This is false for a// message based socket connection.ZeroReadIsEOF bool// Whether this is a file rather than a network socket.isFile bool// The kind of this file.kind fileKind
}

  FD是用户态基本的描述符结构,内部几个变量通过注释可以读懂,挑几个难理解的
fdmu 控制读写互斥访问的锁,因为可能几个协程并发读写
Sysfd 系统返回的描述符,不会更改除非系统关闭回收
rop 为读操作,这个其实是根据不同系统网络模型封装的统一类型,比如epoll,iocp等都封装为统一的operation,根据不同的系统调用不同的模型
wop 为写操作封装的类型
pd 这个是最重要的结构,内部封装了协程等基本信息,这个变量会和内核epoll线程通信,从而实现epoll通知和控制用户态协程的效果。
下面我们着重看看pollDesc结构

type pollDesc struct {runtimeCtx uintptr
}

  pollDesc内部存储了一个unintptr的变量,uintptr为四字节大小的变量,可以存储指针。runtimeCtx顾名思义,为运行时上下文,其初始化代码如下

func (pd *pollDesc) init(fd *FD) error {serverInit.Do(runtime_pollServerInit)ctx, errno := runtime_pollOpen(uintptr(fd.Sysfd))if errno != 0 {if ctx != 0 {runtime_pollUnblock(ctx)runtime_pollClose(ctx)}return errnoErr(syscall.Errno(errno))}pd.runtimeCtx = ctxreturn nil
}

  runtime_pollOpen实际link的是runtime包下的poll_runtime_pollOpen函数,具体实现在runtime/netpoll.go

//go:linkname poll_runtime_pollOpen internal/poll.runtime_pollOpen
func poll_runtime_pollOpen(fd uintptr) (*pollDesc, int) {pd := pollcache.alloc()lock(&pd.lock)if pd.wg != 0 && pd.wg != pdReady {throw("runtime: blocked write on free polldesc")}if pd.rg != 0 && pd.rg != pdReady {throw("runtime: blocked read on free polldesc")}pd.fd = fdpd.closing = falsepd.everr = falsepd.rseq++pd.rg = 0pd.rd = 0pd.wseq++pd.wg = 0pd.wd = 0unlock(&pd.lock)var errno int32errno = netpollopen(fd, pd)return pd, int(errno)
}

  可以看出通过pollcache.alloc返回*pollDesc类型的变量pd,并且用pd初始化了netpollopen,这里我们稍作停留,谈谈pollcache

func (c *pollCache) alloc() *pollDesc {lock(&c.lock)if c.first == nil {const pdSize = unsafe.Sizeof(pollDesc{})n := pollBlockSize / pdSizeif n == 0 {n = 1}// Must be in non-GC memory because can be referenced// only from epoll/kqueue internals.mem := persistentalloc(n*pdSize, 0, &memstats.other_sys)for i := uintptr(0); i < n; i++ {pd := (*pollDesc)(add(mem, i*pdSize))pd.link = c.firstc.first = pd}}pd := c.firstc.first = pd.linkunlock(&c.lock)return pd
}

  alloc函数做了这样的操作,如果链表头为空则初始化pdSize个pollDesc节点,并pop出头部,如果不为空则直接pop出头部节点,每个节点的类型就是*pollDesc类型,具体实现在runtime/netpoll.go中

type pollDesc struct {link *pollDesc // in pollcache, protected by pollcache.lock// The lock protects pollOpen, pollSetDeadline, pollUnblock and deadlineimpl operations.// This fully covers seq, rt and wt variables. fd is constant throughout the PollDesc lifetime.// pollReset, pollWait, pollWaitCanceled and runtime·netpollready (IO readiness notification)// proceed w/o taking the lock. So closing, everr, rg, rd, wg and wd are manipulated// in a lock-free way by all operations.// NOTE(dvyukov): the following code uses uintptr to store *g (rg/wg),// that will blow up when GC starts moving objects.lock    mutex // protects the following fieldsfd      uintptrclosing booleverr   bool    // marks event scanning error happeneduser    uint32  // user settable cookierseq    uintptr // protects from stale read timersrg      uintptr // pdReady, pdWait, G waiting for read or nilrt      timer   // read deadline timer (set if rt.f != nil)rd      int64   // read deadlinewseq    uintptr // protects from stale write timerswg      uintptr // pdReady, pdWait, G waiting for write or nilwt      timer   // write deadline timerwd      int64   // write deadline
}

  其中rt和wt分别是读写定时器,用来防止读写超时。
fd为描述符指针,lock负责保护pollDesc内部成员变量读写防止多线程操作导致并发问题。
除此之外最重要的是rg和wg两个变量,rg保存了用户态操作pollDesc的读协程地址,wg保存了用户态操作pollDesc写协程地址。
举个例子,当我们在在用户态协程调用read阻塞时rg就被设置为该读协程,当内核态epoll_wait检测read就绪后就会通过rg找到这个协程让后恢复运行。
rg,wg默认是0,rg为pdReady表示读就绪,可以将协程恢复,为pdWait表示读阻塞,协程将要被挂起。wg也是如此。
所以golang其实是通过pollDesc实现用户态和内核态信息的共享的。
回到之前poll_runtime_pollOpen函数,我们就理解了其内部生成*pollDesc,并且传入netpollopen函数,netpollopen对应实现了epoll的init和wait,从而达到了用户态信息和内核态的关联。

netpollopen函数不同模型的实现不相同,epoll的实现在runtime/netpoll_epoll.go中

func netpollopen(fd uintptr, pd *pollDesc) int32 {var ev epolleventev.events = _EPOLLIN | _EPOLLOUT | _EPOLLRDHUP | _EPOLLET*(**pollDesc)(unsafe.Pointer(&ev.data)) = pdreturn -epollctl(epfd, _EPOLL_CTL_ADD, int32(fd), &ev)
}

  

从而实现了epoll将fd添加至内核epoll表里,同样pd作为event的data传入内核表,从而实现内核态和用户态协程的关联。
runtime/netpoll_epoll.go实现了epoll模型的基本操作,详见源码。

golang如何将一个描述符加入epoll表中

传统的流程为:
生成socket–> bind socket–> listen–> accept
在golang中生成socket,bind,以及listen统一封装好了
Listen–> lc.Listen –> sl.listenTCP –> internetSocket
internetSocket –> socket –> newFD && listenStream
在newFD中完成了描述符创建,在listenStream完成了bind和listen。newFD只初始化了基本的结构,未完成pollDesc类型变量pd的初始化。
我们跟随源码查看listen的绑定流程

unc (lc *ListenConfig) Listen(ctx context.Context, network, address string) (Listener, error) {addrs, err := DefaultResolver.resolveAddrList(ctx, "listen", network, address, nil)if err != nil {return nil, &OpError{Op: "listen", Net: network, Source: nil, Addr: nil, Err: err}}sl := &sysListener{ListenConfig: *lc,network:      network,address:      address,}var l Listenerla := addrs.first(isIPv4)switch la := la.(type) {case *TCPAddr:l, err = sl.listenTCP(ctx, la)case *UnixAddr:l, err = sl.listenUnix(ctx, la)default:return nil, &OpError{Op: "listen", Net: sl.network, Source: nil, Addr: la, Err: &AddrError{Err: "unexpected address type", Addr: address}}}if err != nil {return nil, &OpError{Op: "listen", Net: sl.network, Source: nil, Addr: la, Err: err} // l is non-nil interface containing nil pointer}return l, nil
}

 可以看出Listen函数返回的类型为Listener接口类型,其内部根据la类型调用不同的listen函数,这里查看listenTCP 

func (sl *sysListener) listenTCP(ctx context.Context, laddr *TCPAddr) (*TCPListener, error) {fd, err := internetSocket(ctx, sl.network, laddr, nil, syscall.SOCK_STREAM, 0, "listen", sl.ListenConfig.Control)if err != nil {return nil, err}return &TCPListener{fd: fd, lc: sl.ListenConfig}, nil
}

  internetSocket内部调用socket生成描述符返回

func socket(ctx context.Context, net string, family, sotype, proto int, ipv6only bool, laddr, raddr sockaddr, ctrlFn func(string, string, syscall.RawConn) error) (fd *netFD, err error) {s, err := sysSocket(family, sotype, proto)if err != nil {return nil, err}if err = setDefaultSockopts(s, family, sotype, ipv6only); err != nil {poll.CloseFunc(s)return nil, err}if fd, err = newFD(s, family, sotype, net); err != nil {poll.CloseFunc(s)return nil, err}if laddr != nil && raddr == nil {switch sotype {case syscall.SOCK_STREAM, syscall.SOCK_SEQPACKET:if err := fd.listenStream(laddr, listenerBacklog(), ctrlFn); err != nil {fd.Close()return nil, err}return fd, nilcase syscall.SOCK_DGRAM:if err := fd.listenDatagram(laddr, ctrlFn); err != nil {fd.Close()return nil, err}return fd, nil}}if err := fd.dial(ctx, laddr, raddr, ctrlFn); err != nil {fd.Close()return nil, err}return fd, nil
} 

socket函数做了这样几件事
1 调用sysSocket生成描述符
2 调用newFD封装描述符,构造netFD类型变量
3 调用netFD的listenDatagram方法,实现bind和listen

func (fd *netFD) listenStream(laddr sockaddr, backlog int, ctrlFn func(string, string, syscall.RawConn) error) error {var err errorif err = setDefaultListenerSockopts(fd.pfd.Sysfd); err != nil {return err}var lsa syscall.Sockaddrif lsa, err = laddr.sockaddr(fd.family); err != nil {return err}if ctrlFn != nil {c, err := newRawConn(fd)if err != nil {return err}if err := ctrlFn(fd.ctrlNetwork(), laddr.String(), c); err != nil {return err}}if err = syscall.Bind(fd.pfd.Sysfd, lsa); err != nil {return os.NewSyscallError("bind", err)}if err = listenFunc(fd.pfd.Sysfd, backlog); err != nil {return os.NewSyscallError("listen", err)}if err = fd.init(); err != nil {return err}lsa, _ = syscall.Getsockname(fd.pfd.Sysfd)fd.setAddr(fd.addrFunc()(lsa), nil)return nil
}

  listenStream除了bind和listen操作之外,还执行了netFD的init操作,这个init操作就是将netFD和epoll关联,将描述符和协程信息写入epoll表

func (fd *netFD) init() error {errcall, err := fd.pfd.Init(fd.net, true)if errcall != "" {err = wrapSyscallError(errcall, err)}return err
}

  

前文讲过fd.pfd为FD类型,是和epoll通信的核心结构,FD的Init方法内完成了pollDesc类型成员变量pd和epoll的关联。
其内部调用了fd.pd.init(fd),pd就是fd的pollDesc类型成员变量,其init函数上面已经解释过了调用了runtime_pollOpen,runtime_pollOpen是link到
runtime/netpoll.go中poll_runtime_pollOpen函数,这个函数将用户态协程的pollDesc信息写入到epoll所在的单独线程,从而实现用户态和内核态的关联。
总结下bind和listen后续的消息流程就是:
listenStream –> bind&listen&init –> pollDesc.Init –> runtime_pollOpen
–> poll_runtime_pollOpen –> epollctl(EPOLL_CTL_ADD)

到此为止golang网络描述符从生成到绑定和监听,以及写入epoll表的流程分析完毕,下一篇分析accept流程以及用户态协程如何挂起,epoll就绪后如何唤醒协程。
感谢关注我的公众号

这篇关于谈谈golang的netpoll原理(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/392743

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.