功能性模块:(10)Spearman‘s rank correlation coefficient的简单理解(含与PCC之间的区别)

本文主要是介绍功能性模块:(10)Spearman‘s rank correlation coefficient的简单理解(含与PCC之间的区别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spearman’s rank correlation coefficient的简单理解

1. 背景

在统计学中,斯皮尔曼等级相关系数(Spearman’s rank correlation coefficient, 或者Spearman’s ρ \rho ρ, 通常使用 ρ \rho ρ或者 r s r_s rs来表示),是一个等级相关性的非参数度量(两个变量等级之间的统计相关性)。这个相关系数使用单调函数来描述两个变量之间的关系程度。

如果两个变量的Spearman correlation和Pearson correlation相等,Person correlation评估两组变量的线性关系,Spearman correlation评估的是两组变量的单调性关系(无论是否线性)。如果没有重复的数据值,每个变量都是另外一个变量的完美单调函数时,会出现+1或者-1的完美Spearman correlation。

直观上来看,如果两个变量之间具有相似的等级(或者换句话说完全相同的等级,那么相关性就为1),相似的情况下相关性也会比较高,如果两个变量具有不同的等级(或者完全相反的情况下,那么相关性就为-1),相关性就会非常低。

那么Spearman’s coefficient适用于连续序数变量或者离散序数变量的相关性表示

2.定义

Spearman’s rank correlation coefficient被定义成等级变量之间的Pearson coefficient。

对于样本容量为n的样本,将n个原始数据 X i X_i Xi, Y i Y_i Yi转换成等级数据 r g X i rg_{X_i} rgXi, r g Y i rg_{Y_i} rgYi,并且 r s r_s rs可以按照如下的公式进行计算

r s = ρ r g X i , r g Y i = c o v ( r g X , r g Y ) σ r g X σ r g Y r_s =\rho_{rg_{X_i},rg_{Y_i}}=\frac{cov(rg_X, rg_Y)}{\sigma_{rg_X}\sigma_{rg_Y}} rs=ρrgXi,rgYi=σrgXσrgYcov(rgX,rgY)

其中 ρ \rho ρ表示的是Pearson correlation coefficient(PCC),但是使用的变量是转换成等级后的变量。
c o v ( r g X , r g Y ) cov(rg_X, rg_Y) cov(rgX,rgY)是转换成等级变量之间的协方差

σ r g X \sigma_{rg_X} σrgX, σ r g Y \sigma_{rg_Y} σrgY是转换成等级变量后的标准差

只有当所有n个等级都是不同的整数是,才可以使用下面的公式进行计算
r s = 1 − 6 ∑ d i 2 n ( n 2 − 1 ) r_s=1-\frac {6\sum{d_i^2}}{n(n^2-1)} rs=1n(n21)6di2

其中 d j = r g ( X i ) − r g ( Y i ) d_j=rg(X_i)-rg(Y_i) dj=rg(Xi)rg(Yi)是两个变量值等级之间的差异

3.代码实现

很简单的代码实现

def ComputeRs(a, b):aa = np.column_stack((a, b))# rank的方式有很多种,这里使用的average的方式aa_ranked = np.apply_along_axis(stats.rankdata, 0, aa)rs = np.corrcoef(aa_ranked, rowvar=0)return rs[1, 0]

4. Spearman‘s rank correlation coefficient 与Pearson Correlation coeffiicient的区别

最主要的区别是:

  • Pearson Correlation coeffiicient是关注的两组数据的线性相关性
  • Spearman‘s rank correlation coefficient 是关注两组数据的单调性,换句话说是两组数据的趋势

4.1 线性正相关

在这里插入图片描述

4.2 线性负相关

在这里插入图片描述

4.3 非线性函数(Sigmoid)

在这里插入图片描述
可以看到Spearman还是相关性几乎为+1

4.4 非线性函数(二次函数)

在这里插入图片描述

4.5 随机数

在这里插入图片描述

4.6 异常值

在这里插入图片描述
总结,从4.6上可以看出,一旦数据存在异常值,那么Spearman‘s rank correlation coefficient的鲁棒性会更好一些。

这篇关于功能性模块:(10)Spearman‘s rank correlation coefficient的简单理解(含与PCC之间的区别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390984

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu