iOS多线程编程之Grand Central Dispatch(GCD)

2023-11-11 03:58

本文主要是介绍iOS多线程编程之Grand Central Dispatch(GCD),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍:

Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统。这建立在任务并行执行的线程池模式的基础上的。它首次发布在Mac OS X 10.6 ,iOS 4及以上也可用。

设计:

GCD的工作原理是:让程序平行排队的特定任务,根据可用的处理资源,安排他们在任何可用的处理器核心上执行任务。

一个任务可以是一个函数(function)或者是一个block。 GCD的底层依然是用线程实现,不过这样可以让程序员不用关注实现的细节。

GCD中的FIFO队列称为dispatch queue,它可以保证先进来的任务先得到执行
dispatch queue分为下面三种:

Serial      

又称为private dispatch queues,同时只执行一个任务。Serial queue通常用于同步访问特定的资源或数据。当你创建多个Serial queue时,虽然它们各自是同步执行的,但Serial queue与Serial queue之间是并发执行的。

Concurrent

又称为global dispatch queue,可以并发地执行多个任务,但是执行完成的顺序是随机的。

Main dispatch queue

它是全局可用的serial queue,它是在应用程序主线程上执行任务的。

我们看看dispatch queue如何使用

1、常用的方法dispatch_async

为了避免界面在处理耗时的操作时卡死,比如读取网络数据,IO,数据库读写等,我们会在另外一个线程中处理这些操作,然后通知主线程更新界面。

用GCD实现这个流程的操作比前面介绍的NSThread  NSOperation的方法都要简单。代码框架结构如下:

[cpp] view plain copy print ?
  1. dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{  
  2.     // 耗时的操作   
  3.     dispatch_async(dispatch_get_main_queue(), ^{  
  4.         // 更新界面   
  5.     });  
  6. });  
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
// 耗时的操作
dispatch_async(dispatch_get_main_queue(), ^{
// 更新界面
});
});
如果这样还不清晰的话,那我们还是用上两篇博客中的下载图片为例子,代码如下:

[cpp] view plain copy print ?
  1. dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{  
  2.     NSURL * url = [NSURL URLWithString:@"http://avatar.csdn.net/2/C/D/1_totogo2010.jpg"];  
  3.     NSData * data = [[NSData alloc]initWithContentsOfURL:url];  
  4.     UIImage *image = [[UIImage alloc]initWithData:data];  
  5.     if (data != nil) {  
  6.         dispatch_async(dispatch_get_main_queue(), ^{  
  7.             self.imageView.image = image;  
  8.          });  
  9.     }  
  10. });  
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
NSURL * url = [NSURL URLWithString:@"http://avatar.csdn.net/2/C/D/1_totogo2010.jpg"];
NSData * data = [[NSData alloc]initWithContentsOfURL:url];
UIImage *image = [[UIImage alloc]initWithData:data];
if (data != nil) {
dispatch_async(dispatch_get_main_queue(), ^{
self.imageView.image = image;
});
}
});

运行显示:


是不是代码比NSThread  NSOperation简洁很多,而且GCD会自动根据任务在多核处理器上分配资源,优化程序。

系统给每一个应用程序提供了三个concurrent dispatch queues。这三个并发调度队列是全局的,它们只有优先级的不同。因为是全局的,我们不需要去创建。我们只需要通过使用函数dispath_get_global_queue去得到队列,如下:

[cpp] view plain copy print ?
  1. dispatch_queue_t globalQ = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);    
dispatch_queue_t globalQ = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);  

这里也用到了系统默认就有一个串行队列main_queue

[cpp] view plain copy print ?
  1. dispatch_queue_t mainQ = dispatch_get_main_queue();    
dispatch_queue_t mainQ = dispatch_get_main_queue();  

虽然dispatch queue是引用计数的对象,但是以上两个都是全局的队列,不用retain或release。

2、dispatch_group_async的使用

dispatch_group_async可以实现监听一组任务是否完成,完成后得到通知执行其他的操作。这个方法很有用,比如你执行三个下载任务,当三个任务都下载完成后你才通知界面说完成的了。下面是一段例子代码:

[cpp] view plain copy print ?
  1. dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);  
  2. dispatch_group_t group = dispatch_group_create();  
  3. dispatch_group_async(group, queue, ^{  
  4.     [NSThread sleepForTimeInterval:1];  
  5.     NSLog(@"group1");  
  6. });  
  7. dispatch_group_async(group, queue, ^{  
  8.     [NSThread sleepForTimeInterval:2];  
  9.     NSLog(@"group2");  
  10. });  
  11. dispatch_group_async(group, queue, ^{  
  12.     [NSThread sleepForTimeInterval:3];  
  13.     NSLog(@"group3");  
  14. });  
  15. dispatch_group_notify(group, dispatch_get_main_queue(), ^{  
  16.     NSLog(@"updateUi");  
  17. });  
  18. dispatch_release(group);  
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_group_t group = dispatch_group_create();
dispatch_group_async(group, queue, ^{
[NSThread sleepForTimeInterval:1];
NSLog(@"group1");
});
dispatch_group_async(group, queue, ^{
[NSThread sleepForTimeInterval:2];
NSLog(@"group2");
});
dispatch_group_async(group, queue, ^{
[NSThread sleepForTimeInterval:3];
NSLog(@"group3");
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"updateUi");
});
dispatch_release(group);
dispatch_group_async是异步的方法,运行后可以看到打印结果:

2012-09-25 16:04:16.737 gcdTest[43328:11303] group1
2012-09-25 16:04:17.738 gcdTest[43328:12a1b] group2
2012-09-25 16:04:18.738 gcdTest[43328:13003] group3
2012-09-25 16:04:18.739 gcdTest[43328:f803] updateUi

每个一秒打印一个,当第三个任务执行后,upadteUi被打印。


3、dispatch_barrier_async的使用

dispatch_barrier_async是在前面的任务执行结束后它才执行,而且它后面的任务等它执行完成之后才会执行

例子代码如下:

[cpp] view plain copy print ?
  1. dispatch_queue_t queue = dispatch_queue_create("gcdtest.rongfzh.yc", DISPATCH_QUEUE_CONCURRENT);  
  2. dispatch_async(queue, ^{  
  3.     [NSThread sleepForTimeInterval:2];  
  4.     NSLog(@"dispatch_async1");  
  5. });  
  6. dispatch_async(queue, ^{  
  7.     [NSThread sleepForTimeInterval:4];  
  8.     NSLog(@"dispatch_async2");  
  9. });  
  10. dispatch_barrier_async(queue, ^{  
  11.     NSLog(@"dispatch_barrier_async");  
  12.     [NSThread sleepForTimeInterval:4];  
  13.   
  14. });  
  15. dispatch_async(queue, ^{  
  16.     [NSThread sleepForTimeInterval:1];  
  17.     NSLog(@"dispatch_async3");  
  18. });  
    dispatch_queue_t queue = dispatch_queue_create("gcdtest.rongfzh.yc", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:2];
NSLog(@"dispatch_async1");
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:4];
NSLog(@"dispatch_async2");
});
dispatch_barrier_async(queue, ^{
NSLog(@"dispatch_barrier_async");
[NSThread sleepForTimeInterval:4];
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:1];
NSLog(@"dispatch_async3");
});

打印结果:

2012-09-25 16:20:33.967 gcdTest[45547:11203] dispatch_async1

2012-09-25 16:20:35.967 gcdTest[45547:11303] dispatch_async2

2012-09-25 16:20:35.967 gcdTest[45547:11303] dispatch_barrier_async

2012-09-25 16:20:40.970 gcdTest[45547:11303] dispatch_async3

请注意执行的时间,可以看到执行的顺序如上所述。

4、dispatch_apply 

执行某个代码片段N次。
dispatch_apply(5, globalQ, ^(size_t index) {
    // 执行5次
});

本篇使用的到的例子代码:http://download.csdn.net/detail/totogo2010/4596471

GCD还有很多其他用法,可以参考官方文档

参考的文档还有:http://en.wikipedia.org/wiki/Grand_Central_Dispatch

这篇关于iOS多线程编程之Grand Central Dispatch(GCD)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/387391

相关文章

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。