从PWR_BackupAccessCmd函数理解位带操作

2023-11-10 07:59

本文主要是介绍从PWR_BackupAccessCmd函数理解位带操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在STM32官方提供的库函数中,很多地方都用到了位带操作,下面就针对官方提供的rtc.c文件中的一行代码PWR_BackupAccessCmd(ENABLE)进行解读,复习下位带操作的精髓。
1. 函数的定义
对PWR_BackupAccessCmd(ENABLE)函数跟踪,在stm32f10x_pwr.c文件中找到原函数的定义:

/**官方说明* @brief   Enables or disables access to the RTC and backup registers.* @param   NewState: new state of the access to the RTC and backup registers.*          This parameter can be: ENABLE or DISABLE.* @retval  None*/
void PWR_BackupAccessCmd(FunctionalState NewState)
{/* Check the parameters */assert_param(IS_FUNCTIONAL_STATE(NewState));/*读取该地址的参数值,其值为32位参内数*/*(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;   
}

上述函数就一个入口参数,输入ENABLE或DISABLE,即1或0,无返回值。这里主要关注最后一行代码:

*(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;

2. 对(__IOuint32_t ) CR_DBP_BB = (uint32_t)NewState函数解读
2.1 初识
该函数用到了位带操作,先大致解读下:
对CR_DBP_BB定位会在stm32f10x_pwr.c文件的47~55行找到如下一段代码:

/* --------- PWR registers bit address in the alias region ---------- */
#define PWR_OFFSET     (PWR_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of DBP bit */
#define CR_OFFSET      (PWR_OFFSET + 0x00)
#define DBP_BitNumber  0x08
#define CR_DBP_BB      (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))      /*记住这行代码,后面要考*/

最后一行代码看起来眼熟吗,先看下正点原子网站上对该函数的原话解释
***** 原话摘录 *****
这是位带操作,CR_OFFSET 是寄存器相对0x40000000的地址偏移,DBP_BitNumber 是CR寄存器的DBP位偏移。
位带地址 = 0x42000000 + 32×地址偏移 + 4×位偏移 (1)
通过设置位带为0或1,等效与对CR[DBP]的置位或清零。
***** 原话摘录完 *****
记住公式(1),后面要考。在《Cortex-M3权威指南》第5章中,有如下说明:

图1

图1
电源控制寄存器pwr属于外设寄存器,因此图1中的紫色公式,也就是公式(1), 即: 地址偏移=A-0x40000000= CR_OFFSET (2) 位偏移=n= DBP_BitNumber (3)

2.2 计算CR_OFFSET和DBP_BitNumber
我的理解,函数的目的是对电源控制寄存器PWR_CR中的DBP进行操作,由图2可知,位偏移为8,
即:
位偏移=n= DBP_BitNumber=8 (4)

在这里插入图片描述

图2

其实,之前对CR_DBP_BB定位时,在stm32f10x_pwr.c文件的47-55行这段代码中也有表达:

#define DBP_BitNumber    0x08

接下来,计算CR_OFFSET值,在《STM32中文参考手册》第二章中,列出了所有寄存器组的起始地址,包括电源控制(PWR)寄存器:
在这里插入图片描述

图3

图3中,电源控制PWR寄存器组的起始地址为0x40007000,在图2电源控制寄存器PWR_CR的描述中,其地址偏移是0x00,也就是电源控制寄存器PWR_CR的起始地址是0x40007000+0x00,即A=0x40007000,那么:
地址偏移=A-0x40000000= CR_OFFSET=0x40007000-0x40000000=0x7000 (5)
因此通过公式(1)可计算出电源控制寄存器PWR_CR的DBP的位带地址:
位带地址 = 0x42000000 + 32×地址偏移 + 4×位偏移=0x42000000 +32×0x7000+ 4×8 (6)
我们还可以从代码中验证上述结果
对CR_OFFSET可定位到stm32f10x_pwr.c文件中的一行代码:

#define CR_OFFSET         (PWR_OFFSET + 0x00)     
// **PWR_OFFSET就是电源控制(PWR)起始地址,0x00是电源控制寄存器PWR_CR的地址偏移**//

对PWR_OFFSET可定位到stm32f10x_pwr.c文件中的一行代码:

/* --------- PWR registers bit address in the alias region ---------- */
#define PWR_OFFSET        (PWR_BASE - PERIPH_BASE)

对PERIPH_BASE可定位到stm32f10x.h文件中的一行代码:

#define PERIPH_BASE       ((uint32_t)0x40000000)

对PWR_BASE可定位到stm32f10x.h文件中的一行代码:

#define PWR_BASE          (APB1PERIPH_BASE + 0x7000)

对APB1PERIPH_BASE可定位到stm32f10x.h文件中的一行代码:

#define APB1PERIPH_BASE      PERIPH_BASE

因此,
APB1PERIPH_BASE= PERIPH_BASE =0x40000000 (7)
PWR_BASE= APB1PERIPH_BASE + 0x7000=0x40007000 (8)
PWR_OFFSET= PWR_BASE - PERIPH_BASE=0x7000 (9)
CR_OFFSET=PWR_OFFSET+0x00=0x7000 (10)
为了计算CR_DBP_BB,对PERIPH_BB_BASE可定位到stm32f10x.h文件中的一行代码:

#define PERIPH_BB_BASE       ((uint32_t)0x42000000) 

至此,电源控制寄存器PWR_CR的DBP的位带地址为:
CR_DBP_BB=PERIPH_BB_BASE + (CR_OFFSET × 32) + (DBP_BitNumber × 4) (11)
即,
CR_DBP_BB=0x42000000+(0x7000 × 32)+( 0x08 × 4)=0x420E0020 (12)
CR_DBP_BB位带地址对应实际的电源控制寄存器PWR_CR的DBP,即第8位,对该地址写1就达到将DBP至1的效果,也就是(__IO uint32_t ) CR_DBP_BB = (uint32_t) NewState 函数的任务(NewState为ENABLE时为1,NewState为DISABLE时为0)。
至于电源控制寄存器PWR_CR的DBP的位带地址0x4215E020如何求证,就不要纠结了。
2.3 图1中A的定义解读
个人觉得即使前面讲解的内容去理解位带操作的代码含义没啥毛病,如果按照2.2章的理解,那么A应该是该寄存器的起始地址,而位序号n的取值范围应该是0≤n≤31。
不过按照图1中对A的定义来说,其实是有问题的。图1中,A为位带区某个比特所在的字节地址,位序号n的取值范围是0≤n≤7。对于一个32位的寄存器,有4个字节地址,第1个字节地址包含0~ 7位bit,第2个字节地址包含8~15位bit,例如电源控制寄存器PWR_CR,其DBP是第八位,则其字节地址和位序号n分别为:
A=电源控制寄存器PWR_CR的起始地址+0x01=0x40007001 (13)
n=0x00 (14)
将公式(13)和(14)带入图1的紫色公式中:
AliasAddr=0x42000000+(0x40007001-0x40000000)× 32+0x00 × 4=0x420E0020 (15)
这也许是官方想要告诉我们的解释,我想对于32位的寄存器,按照我的理解应该也没问题,至于要是碰到16位的寄存器,不知道会不会出现矛盾。
3. 总结
1) 牢记公式(1),即使不熟悉位带操作具体细节,也能依葫芦画瓢编写代码;
2) 位带操作对某个寄存器的某个位进行0或1的读写是最实用的;
3) 使用位带操作时,要理解如何计算A和n的值,便于之后套公式。
写在最后,这是我个人的理解,欢迎大家讨论~

这篇关于从PWR_BackupAccessCmd函数理解位带操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/381379

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

动手学深度学习【数据操作+数据预处理】

import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA