IDL考试前复习笔记(三) 计算NDVI后进行密度分割

2023-11-09 16:50

本文主要是介绍IDL考试前复习笔记(三) 计算NDVI后进行密度分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言
  发现这个好像和我之前写的程序重了,之前写考核的时候密度分割部分直接抄的课上的程序,这次看懂了,挺简单的 。

需求分析

Created with Raphaël 2.2.0 开始 b3,b4波段 计算NDVI 密度分割 密度分割图 结束

这个代码有点太过简单了…不废话了,干活!

1.预定义颜色索引矩阵,读入近红和红数据,计算NDVI

  dst = [[-1.0, 0.0, 255, 127, 36], $[.0, 0.2, 255, 165, 79], $[0.2, .4, 238, 216, 174], $[ .4, .6, 193, 255, 193], $[ .6, .7, 193, 255, 193], $[ .7, .8, 0  , 139, 0]b3file = 'C:\Users\黄\Desktop\te\red_subset.tif'b4file = 'C:\Users\黄\Desktop\te\nir_subset.tif'b3=READ_TIFF(b3file)b4=READ_TIFF(b4file)ndvi=(FLOAT(b4)-b3)/(FLOAT(b4)+b3)

  首先定义一个矩阵,这个矩阵有5列,第一第二列是判断NDVI的范围,如果接下来我们要分割的NDVI矩阵的值介于这两个之间,那么我就将RGB中的R通道赋值为这个颜色索引矩阵的第3列,G通道赋值为颜色索引矩阵的第4列,B通道为颜色索引矩阵的第5列。因为RGB图像本身就是3个通道合成的图像,单个通道的话是灰度图像,所以我只要求3个分量然后合起来就行了。

在这里插入图片描述
注意点IDL创建矩阵的语法就行了,每一个行向量都需要括起来,$就是换行符的意思,表示没有完成整句话。
然后上面那段话就是计算NDVI的表达式,NDVI的表达式就不想写了,对应变量就好了,就是要注意用float类型加减否则会报除以0的错误。

2.求出索引矩阵的列,并做一些寻访赋值

    sz = SIZE(dst)nds = sz[2]sz = SIZE(ndvi)ncols = sz[1]nrows = sz[2]resultR = BYTARR(ncols, nrows)resultG = BYTARR(ncols, nrows)resultB = BYTARR(ncols, nrows)FOR i=0, nds-1 DO BEGINw = WHERE(ndvi GE dst[0,i] AND ndvi LT dst[1, i], count)IF count GT 0 THEN BEGINresultR[w] = dst[2, i]resultG[w] = dst[3, i]resultB[w] = dst[4, i]ENDIFENDFORimg = bytarr(3, ncols, nrows)img[0, *, *] = resultRimg[1, *, *] = resultGimg[2, *, *] = resultBig = image(img,order=1)

首先size函数会返回dst的5个值,我们只要第3个值,即它有多少行,这个dst有6行就是我们要分割的区间。

后面的size我们要知道计算NDVI的图像的大小,即有多少列,多少行。size[1]就是返回的5个值的第2个值,即图像多少列,size[2]就是size返回的5个值中的第3个,即图像有多少行。

然后预定义3个通道的矩阵,RGB通道的3个值。

后面是for循环,这个循环从0开始,到这个分割区间-1次,其实就是分割区间的区间次的循环
where函数判断NDVI是否介于第一和第二之间,如果介于这两个之间那么我的RGB就赋值为那个索引矩阵的第3、4、5列,完成后就完成分量通道的计算

那么最后,把这三个通道合起来,就成了一幅彩色图像。

最后的最后,显示一下图像吧,记得加上order=1就行了。

在这里插入图片描述

OK了,就是那么个思路和语法。

这篇关于IDL考试前复习笔记(三) 计算NDVI后进行密度分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377370

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、