【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二)

2023-11-09 13:39

本文主要是介绍【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JavaPairRDD的aggregateByKey方法讲解
官方文档说明
Aggregate the values of each key, using given combine functions and a neutral
"zero value". This function can return a different result type, U, than the type of
the values in this RDD, V. Thus, we need one operation for merging a V into 
a U and one operation for merging two U's. The former operation is used for
merging values within a partition, and the latter is used for merging values between
partitions. To avoid memory allocation, both of these functions are allowed to modify 
and return their first argument instead of creating a new U.Parameters:
zeroValue - (undocumented)
seqFunc - (undocumented)
combFunc - (undocumented)
Returns:
(undocumented)
中文含义

aggregateByKey函数对PairRDD中相同Key的值进行聚合操作,在聚合过程中同样使用了一个中立的初始值。和aggregate函数类似,aggregateByKey返回值的类型不需要和RDD中value的类型一致。因为aggregateByKey是对相同Key中的值进行聚合操作,所以aggregateByKey函数最终返回的类型还是Pair RDD,对应的结果是Key和聚合好的值;而aggregate函数直接是返回非RDD的结果,这点需要注意。在实现过程中,定义了三个aggregateByKey函数原型,但最终调用的aggregateByKey函数都一致。

方法原型
// Scala
def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
// java
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,Partitioner partitioner,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,int numPartitions,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)

第一个aggregateByKey函数我们可以自定义Partitioner。除了这个参数之外,其函数声明和aggregate很类似;其他的aggregateByKey函数实现最终都是调用这个。
第二个aggregateByKey函数可以设置分区的个数(numPartitions),最终用的是HashPartitioner。
最后一个aggregateByKey实现先会判断当前RDD是否定义了分区函数,如果定义了则用当前RDD的分区;如果当前RDD并未定义分区 ,则使用HashPartitioner。

实例
public class AggregateByKey {public static void main(String[] args) {System.setProperty("hadoop.home.dir","F:\\hadoop-2.7.1");SparkConf conf = new SparkConf().setMaster("local").setAppName("TestSpark");JavaSparkContext sc = new JavaSparkContext(conf);JavaPairRDD<String,Integer> javaPairRDD = sc.parallelizePairs(Lists.<Tuple2<String, Integer>>newArrayList(new Tuple2<String, Integer>("cat",3),new Tuple2<String, Integer>("dog",33),new Tuple2<String, Integer>("cat",16),new Tuple2<String, Integer>("tiger",66)),2);// 打印样例数据javaPairRDD.foreach(new VoidFunction<Tuple2<String, Integer>>() {public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {System.out.println("样例数据>>>>>>>" + stringIntegerTuple2);}});JavaPairRDD<String,Integer> javaPairRDD1 = javaPairRDD.aggregateByKey(14, new Function2<Integer, Integer, Integer>() {public Integer call(Integer v1, Integer v2) throws Exception {System.out.println("seqOp>>>>>  参数One:"+v1+"--参数Two:"+v2);return Math.max(v1,v2);}}, new Function2<Integer, Integer, Integer>() {public Integer call(Integer v1, Integer v2) throws Exception {System.out.println("combOp>>>>>  参数One:"+v1+"--参数Two:"+v2);return v1+v2;}});// 打印结果数据javaPairRDD1.foreach(new VoidFunction<Tuple2<String, Integer>>() {public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {System.out.println("结果数据>>>>>>>" + stringIntegerTuple2);}});}
}
结果
// 打印样例数据 这里的分区是两个 其中分区内都有一个相同key值
19/03/03 22:16:07 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
样例数据>>>>>>>(cat,3)
样例数据>>>>>>>(dog,33)
19/03/03 22:16:07 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
样例数据>>>>>>>(cat,16)
样例数据>>>>>>>(tiger,66)
19/03/03 22:16:07 INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
// 第一个分区比较大小 14 3 => 14(cat) , 14  33 => 33(dog)
seqOp>>>>>  参数One:14--参数Two:3
seqOp>>>>>  参数One:14--参数Two:33
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 4 ms
19/03/03 22:16:07 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 76 ms on localhost (executor driver) (1/2)
// 第二个分区比较 14 16 => 16(cat) ,14 66 => 66(tiger)
seqOp>>>>>  参数One:14--参数Two:16
seqOp>>>>>  参数One:14--参数Two:66
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 4 ms
// 这个就是combOp阶段 在不同分区内 相同key的值做聚合操作 也就是(cat)14 + (cat)16 = 30 
combOp>>>>>  参数One:14--参数Two:16
// 最后结果 
结果数据>>>>>>>(dog,33)
结果数据>>>>>>>(cat,30)
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
结果数据>>>>>>>(tiger,66)
解析
一定要记住: combOp 是聚合的不同分区相同key的值

从上述过程中,我们就能明白流程是什么了。

  1. seqOp
    开始我们的数据是:
    分片1:(cat,3) (dog,33)
    分片2:(cat,16) (tiger,66)

     	// 这里只有两个分片 所以写两个过程 第一个分片开始seqOp过程:14(zeroValue) 和  3(cat) 比较  = 14(结果1),14(zeroValue) 和  33(dog) 比较  = 14(结果2)第二个分片开始元素聚合过程:14(zeroValue) 和  16(cat) 比较  = 14(结果3),14(zeroValue) 和  66(tiger) 比较  = 14(结果4)
    
  2. combOp(不同分区相同key值)

     	开始分片combOp过程:cat在不同分区有相同key值结果1  + 结果3 = 30(结果5)最终得到的结果2 ,结果4,结果5 结果数据>>>>>>>(dog,33)结果数据>>>>>>>(cat,30)结果数据>>>>>>>(tiger,66)
    

如果有什么不明白的评论留言即可。

这篇关于【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376446

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

Java中Integer128陷阱

《Java中Integer128陷阱》本文主要介绍了Java中Integer与int的区别及装箱拆箱机制,重点指出-128至127范围内的Integer值会复用缓存对象,导致==比较结果为true,下... 目录一、Integer和int的联系1.1 Integer和int的区别1.2 Integer和in

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.