【C++】万字一文全解【继承】及其特性__[剖析底层化繁为简](20)

2023-11-09 07:52

本文主要是介绍【C++】万字一文全解【继承】及其特性__[剖析底层化繁为简](20),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好吖,欢迎来到 YY 滴C++系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁
主要内容含:
在这里插入图片描述

欢迎订阅 YY滴C++专栏!更多干货持续更新!以下是传送门!

目录

  • 一.继承&复用&组合的区别
    • 1)函数复用与继承区别
    • 2)复用的分类
      • [1]白箱复用——继承
      • [2]黑箱复用——组合(优先)
  • 二.继承的基本格式与继承以后的访问方式变化(基类成员)
    • 1)基本格式
    • 2)三种继承方式
    • 3)在派生类中不可见
    • 4)基类成员经过不同继承以后分别到派生类的什么作用域中【访问方式变化】
    • 5)struct和class的默认继承方式
    • 6)实际运用中一般使用都是public继承的原因
  • 三.基类和派生类对象赋值转换【切片概念】
  • 四.继承中的【隐藏】
  • 五.派生类的默认成员函数生成机制
  • 六.“友元关系”不能被继承
  • 七.基类定义了static静态成员,整个继承体系里面只有一个这样的成员
  • 八.复杂的菱形继承及菱形虚拟继承
    • 1)菱形继承
    • 2)解决菱形继承问题方法:虚拟继承
    • 3)虚拟继承解决菱形继承原理————虚基表&虚基表指针&利用偏移量
      • 【1】虚拟继承前后的内存模型变化

一.继承&复用&组合的区别

1)函数复用与继承区别

函数复用与继承区别:

  • 继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能, 这样产生新的类,称派生类 。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类 设计层次 的复用。

2)复用的分类

组合与继承:

  • public继承是一种is-a的关系。也就是说每个派生类对象 都是一个基类对象:相当于[人]与[学生]&[老师]的关系
  • 组合是一种has-a的关系。假设B组合了A,每个B对象中 都有一个A对象:相当于[手]与[人]的关系
  • 优先使用对象组合,而不是类继承
  • 实际尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有
    些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用
    继承,可以用组合,就用组合

[1]白箱复用——继承

  • 继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称 为白箱复用(white-box reuse)。术语“白箱”是相对可视性而言:在继承方式中,基类的 内部细节对子类可见。 继承一定程度破坏了基类的封装 ,基类的改变,对派生类有很 大的影响。派生类和基类间的依赖关系很强, 耦合度高

[2]黑箱复用——组合(优先)

  • 对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象来获得。 对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为 黑箱复用(black-box reuse),因为对象的内部细节是不可见的。对象只以“黑箱”的形式出现。组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被封装.

二.继承的基本格式与继承以后的访问方式变化(基类成员)

1)基本格式

在这里插入图片描述

2)三种继承方式

  • 继承方式分为三种:public继承,protect继承,private继承
  • 保护访问限定符专门为继承而产生:基类private成员在派生类中是不能被访问 ,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为 protected 。可以看出保护成员限定符是因继承才出现的。

3)在派生类中不可见

  • 基类private成员在派生类中无论以什么方式继承都是 不可见的 。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它

4)基类成员经过不同继承以后分别到派生类的什么作用域中【访问方式变化】

记忆与理解:

  1. 权限大小:public > protect > private
  2. 基类中的public成员,经过什么继承,就到派生域的什么作用域中
  3. 【以权限小的为主】基类中的protect成员,权限小于public:经过public继承还是到protect作用域中,其权限又大于private,继承,经过private继承后到private作用域中
  4. 基类中的private成员,经过任何继承都在派生类中不可见
    在这里插入图片描述

5)struct和class的默认继承方式

  • 使用关键字class时默认的继承方式是private
  • 使用struct时默认的继承方式是public
  • 不过最好显示的写出继承方式

6)实际运用中一般使用都是public继承的原因

  • 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡使用protetced/private继承, 因为protetced/private继承下来的成员都只能在派生类的类里面使用 ,实际中扩展维护性不强

三.基类和派生类对象赋值转换【切片概念】

  • 派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片
    或者切割。寓意 把派生类中父类那部分 切来赋值过去
  • 基类对象不能赋值给派生类对象
  • 基类的指针或者引用可以通过 强制类型转换 赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的
    在这里插入图片描述
class Person
{
protected :string _name; // 姓名string _sex;  // 性别int _age; // 年龄
};
class Student : public Person
{
public :int _No ; // 学号
};
void Test ()
{Student sobj ;// 1.子类对象可以赋值给父类对象/指针/引用Person pobj = sobj ;Person* pp = &sobj;Person& rp = sobj;//2.基类对象不能赋值给派生类对象sobj = pobj;// 3.基类的指针可以通过强制类型转换赋值给派生类的指针pp = &sobjStudent* ps1 = (Student*)pp; // 这种情况转换时可以的。ps1->_No = 10;pp = &pobj;Student* ps2 = (Student*)pp; // 这种情况转换时虽然可以,但是会存在越界访问的问题ps2->_No = 10;
}

四.继承中的【隐藏】

  1. 在继承体系中基类和派生类都有独立的作用域。
  2. 子类和父类中有 同名成员 类成员将屏蔽父类对同名成员的直接访问 ,这种情况叫 隐藏, 也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问)
  3. 需要注意的是如果是 成员函数 的隐藏,只需要函数名相同就构成隐藏。
  4. 注意在实际中在继承体系里面最好不要定义同名的成员。

五.派生类的默认成员函数生成机制

6个默认成员函数,“默认”的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类
中,这几个成员函数是如何生成的呢?

  1. 派生类的构造函数必须调用 基类 的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
  2. 派生类的拷贝构造函数必须调用 基类 的拷贝构造完成基类的拷贝初始化。
  3. 派生类的operator=必须要调用 基类 的operator=完成基类的复制。
  4. 派生类的析构函数会在被调用完成后自动调用 基类 的析构函数清理基类成员。因为这样才能 保证派生类对象先清理派生类成员再清理基类成员的顺序。
  5. 派生类对象初始化先调用 基类 构造再调派生类构造。
  6. 派生类对象析构清理先调用派生类析构再调 基类 的析构。
  7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同(多态的条件)。【那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系】

六.“友元关系”不能被继承

  • 友元关系不能继承,也就是说基类友元不能访问子类 私有 保护 成员
//fail
class Student;
class Person
{
public:friend void Display(const Person& p, const Student& s);
protected:string _name; // 姓名
};
class Student : public Person
{
protected:int _stuNum; // 学号
};
void Display(const Person& p, const Student& s)
{cout << p._name << endl;cout << s._stuNum << endl;
}
void main()
{Person p;Student s;Display(p, s);
}

七.基类定义了static静态成员,整个继承体系里面只有一个这样的成员

  • 基类定义了static静态成员,则整个继承体系里面 只有一个 这样的成员——即无论派生出多少个子类,都只有一个static成员实例
class Person
{
public :Person () {++ _count ;}                 //派生类会调用基类的构造
protected :string _name ; // 姓名
public :static int _count; // 统计人的个数。
};
int Person :: _count = 0;
class Student : public Person
{
protected :int _stuNum ; // 学号
};
class Graduate : public Student
{
protected :string _seminarCourse ; // 研究科目
};
void TestPerson()
{Student s1 ;Student s2 ;Student s3 ;Graduate s4 ;cout <<" 人数 :"<< Person ::_count << endl;  //输出结果为4Student ::_count = 0;                   cout <<" 人数 :"<< Person ::_count << endl;  //输出结果为0
}

八.复杂的菱形继承及菱形虚拟继承

1)菱形继承

  • 在面向对象中,常常存在这样的事情,一个派生类它有两个或两个以上的基类,这种行为称作多重继承,示意图如下:
    在这里插入图片描述
  • 在多重继承的基础上,Class Student 和Class Teacher 存在同名数据成员,则对Class Person而言这个同名的数据成员容易产生 二义性问题
  • 菱形继承还会产生 数据冗余 现象;在Assistant的对象中Person成员会有两份;
    在这里插入图片描述
class Person
{
public :string _name ; // 姓名
};
class Student : public Person
{
protected :int _num ; //学号
};
class Teacher : public Person
{
protected :int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :string _majorCourse ; // 主修课程
};
void Test ()
{// 这样会有二义性无法明确知道访问的是哪一个Assistant a ;
a._name = "peter";
// 需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决a.Student::_name = "xxx";a.Teacher::_name = "yyy";
}

2)解决菱形继承问题方法:虚拟继承

  • 虚拟继承 可以解决菱形继承的二义性和数据冗余的问题。如下图代码中 在继承关系前加上“virtual” ,在Student和Teacher的继承Person时使用虚拟继承,即可解决问题。
  • 需要注意的是,虚拟继承不要在其他地方去使用。
class Person
{
public :string _name ; // 姓名
};
class Student : virtual public Person                  //虚拟继承
{
protected :int _num ; //学号
};
class Teacher : virtual public Person                   //虚拟继承
{
protected :int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :string _majorCourse ; // 主修课程
};
void Test ()
{Assistant a ;a._name = "peter";
}

3)虚拟继承解决菱形继承原理————虚基表&虚基表指针&利用偏移量

【1】虚拟继承前后的内存模型变化

  • 虚拟继承前:
    在这里插入图片描述
  • 虚拟继承后:
    在这里插入图片描述
  • 这里可以分析出D对象中将A放到的了 对象组成的最下面 ,这个A同时属于B和C,那么B和C如何去找到公共的A呢?这里是通过了B和C的两个指针,指向的一张表。这两个指针叫 虚基表指针 ,这两个表叫 虚基表 。虚基表中存的 偏移量 通过偏移量可以找到下面的A

这篇关于【C++】万字一文全解【继承】及其特性__[剖析底层化繁为简](20)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374865

相关文章

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.