安全多方计算之SPDZ开源库语法详解——Sint

2023-11-09 06:30

本文主要是介绍安全多方计算之SPDZ开源库语法详解——Sint,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安全类型:sint (Secret integer in the protocol-specific domain.)

Most non-linear operations require compile-time parameters for bit length and statistical security. They default to the global parameters set by program.set_bit_length() and program.set_security(). The acceptable minimum for statistical security is considered to be 40. The defaults for the parameters is output at the beginning of the compilation.

If the computation domain is modulo a power of two, the operands will be truncated to the bit length, and the security parameter does not matter. Modulo prime, the behaviour is undefined and potentially insecure if the operands are longer than the bit length.

sint是SPDZ定义的安全类型,属于隐私数据,只用通过特定的方法才能公开。

目录

1. __init__()

2. get_input_from()、get_raw_input_from()

3. reveal_to()

4. get_random_int()

5. get_random()

6. 比较运算

7. 取相反数、取绝对值

8. pow2()、__rpow__()

9. 移位操作

10.long_one()

11.int_div()

12. mod2m()

13. __mod__()

14. bit_decompose()

15. if_else(a,b)

1. __init__()

__init__(val=Nonesize=None)

Parameters:
  • val – initialization (sint/cint/regint/int/cgf2n or list thereof)
  • size – vector size (int), defaults to 1 or size of list
a = sint()
sint.__init__(a)
a.__init__(10)
print_str("a: %s\n", a.reveal())

2. get_input_from()、get_raw_input_from()

get_input_from(cls, player)、get_raw_input_from(cls, player)

从player中接受数据。两个函数类似。用法这里不写了,可以看下一个函数。

3. reveal_to()

reveal_to(self, player)

将sint数泄露给player。我觉得reveal这个词用的很准确,sint就是定义的秘密数,从安全方面考虑,不应该泄露给别人,这个函数是将一个秘密数reveal to 一个 player。reveal这个词可以提醒开发人员慎用。

在下面这个程序里,我定义了一个sint类型变量a,a从player0中接受数据。加一之后把它reveal给了player1。结果可以在Player-Data/Private-Output-1里查看

a = sint()
print_ln("a = %s",a.reveal())
a = sint.get_input_from(0)
a = a + 1
print_ln("a = %s",a.reveal())
a.reveal_to(1)

程序编译:

./compile.py test_sint

生成证书: 

Scripts/setup-ssl.sh 2

输入数据:

echo 1 > Player-Data/Input-P0-0

执行程序,开两个不同终端:

./semi-party.x -N 2 -p 0 test_sint
./semi-party.x -N 2 -p 1 test_sint

程序执行完毕,我们可以查看Player-Data/Private-Output-1是否有写入数据:

确实是写入了数据,但是这个数据乱码,不知道什么原因,猜测是加密过的。它生成了好几个数据文件,可以查看下,其他的数据都是空的,因为程序并没有对他们写入数据。

4. get_random_int()

get_random_int(cls, bits)  生成一个“bits”长度比特的随机数。下面例子是生成3比特长的随机数(0~7之间的随机数)

for i in range(5):a = sint.get_random_int(3)print_ln("a = %s",a.reveal())

5. get_random()

get_random(cls)

Secret random ring element according to security model. 生成一个环上的随机数。

for i in range(3):b = sint.get_random()print_ln("b = %s",b.reveal())

编译:

./compile.py test_sint

执行:  执行时可以使用-R指定环的大小(这里是2^128)。

Scripts/ring.sh -R 128 test_sint

6. 比较运算

小于:less_than = __lt__()

大于:greater_than = __gt__()

小于等于: less_equal = __le__()

大于等于: greater_equal = __ge__()

等于: equal = __eq__()

不等于: not_equal = __ne__()

a = sint(12)
b = sint(13)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
print_ln("less_than: %s", sint.__lt__(a,b).reveal())
print_ln("greater_than: %s", sint.__gt__(a,b).reveal())
print_ln("less_equal: %s", sint.__le__(a,b).reveal())
print_ln("greater_equal: %s", sint.__ge__(a,b).reveal())
print_ln("equal: %s", sint.__eq__(a,b).reveal())
print_ln("not_equal: %s", sint.__ne__(a,b).reveal()) 

 编译的时候要指定环数。程序运行结果:

7. 取相反数、取绝对值

__neg__(self)  取相反数a = 0 - a

__abs__(self) 取绝对值a = |a|

a = sint(12)
b = sint(20)
e = a - b
c1 = sint.__neg__(b-a)
c2 = sint.__neg__(a-b)
d = sint.__abs__(e)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
print_ln("c1: %s",c1.reveal())
print_ln("c2: %s",c2.reveal())
print_ln("b: %s",d.reveal())

编译的时候要加-R指定环数。它不能表示负数,所以在你打印一个负数时,他会打印0,原因未知。 

8. pow2()、__rpow__()

pow2(self, bit_length=None, security=None)   官方描述是:Secret power of two.

输出2的n次幂。一个很奇怪的函数。

平常的幂函数一般输入一个n然后计算2的n次幂。但是这个函数不是这样的。这个函数的输入是比特长度。

假设你的输入的比特长度值是 i 。再设 i 的取值在2^{j-1}+1<i<2^j, 那么这个函数随机返回序列[2^0,2^1,2^2,...,2^{2^j-1}]中的一个值。

下面程序里我执行了100次这个函数,他返回的值都是(0,2^15)之间的2次幂。(i=13时,是在2^3+1到2^4之间的,那么它的返回值都是(0, 2^{2^{4}-1})之间的2次幂。

n = 100
a = sint(0)
for i in range(n):b = a.pow2(13)print_ln("b = %s",b.reveal())

下面是部分执行结果:最大值时32768=2^15

__rpow__(self, base)

我就没见你这么糊弄的。下面是官方源代码:

    def __rpow__(self, base):""" Secret power computation. Base must be two.Uses global parameters for bit length and security. """if base == 2:return self.pow2()else:return NotImplemented

基数等于2调用pow2

基数不等于2,NotImplemented ???

9. 移位操作

__lshift__(self, other, bit_length=None, security=None) 左移

__rshift__(self, other, bit_length=None, security=None, signed=True) 右移

__rlshift__(self, other)  =  other * 2**self

__rrshift__(self, other):rlshift的逆操作

a = sint(39)
print_ln("a: %s",a.reveal())
b = a.__lshift__(2)
print_ln("b: %s",b.reveal())
c = b.__rshift__(2)
print_ln("c: %s",c.reveal())b = a.__rlshift__(2)
print_ln("b: %s",b.reveal())
c = b.__rrshift__(2).__abs__()
print_ln("c: %s",c.reveal())

10.long_one()

返回1.

不知道这个函数有什么意义。

c = sint.long_one()
print_ln("c: %s",c)

11.int_div()

int_div(self, other, bit_length=None, security=None)

除法运算,这里的除法运算是在域上的除法,我们知道在群环域中,只有域可以进行除法运算。这个函数卡了很久,只要是卡在编译和执行方法上,编译虽然通过,但执行总是出错。

这个实例计算6/3,也就是计算6*(3^{-1})计算有限域的逆大概是个耗时运算吧,运行起来特别慢。

a = sint(6)
b = sint(3)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
c = a.int_div(b,32)
print_ln("c: %s",c.reveal())

因为是域上的运算,编译的时候可以加-F执行域的大小,也可以不加(默认为64比特):

./compile.py -F 32 test_sint

我使用了两种方法执行,一个是基于OT协议的semi-party.x;一个是基于半同态加密的hemi-party.x,大家可以感受下执行时间的差距。

               

这个函数返回值也是sint类型。下面是a、b取随机数的例子

12. mod2m()

mod2m(self, m, bit_length=None, security=None, signed=True)

模运算,模2^m

a = sint(456463)
print_ln("a = %s", a.reveal())
b = a.mod2m(1)
print_ln("b = %s mod (2^1)", b.reveal())
b = a.mod2m(2)
print_ln("b = %s mod (2^2)", b.reveal())
b = a.mod2m(3)
print_ln("b = %s mod (2^3)", b.reveal())
b = a.mod2m(4)
print_ln("b = %s mod (2^4)", b.reveal())
b = a.mod2m(5)
print_ln("b = %s mod (2^5)", b.reveal())
b = a.mod2m(6)
print_ln("b = %s mod (2^6)", b.reveal())

13. __mod__()

__mod__(self, modulus)

模运算,模数为传入的参数modulus

emmm……理论上可以模任意的modulus,但是开发者只实现了模2,其他的模数没有 实现。也就是说只有模2时才能编译通过,其他情况编译不通过。

模2时:

a = sint(456463)
print_ln("a = %s", a.reveal())
b = a.__mod__(2)
print_ln("b = %s mod (2)", b.reveal())

模其他数时报错:

14. bit_decompose()

bit_decompose(self, bit_length=None, security=None)

将整数分解为二进制

a = sint(456463)
print_ln("a = %s", a.reveal())
print_str("b = ")
b = a.bit_decompose()
for i in b:print_str("%s",i.reveal())
print_ln()a = sint(46)
print_ln("a = %s", a.reveal())
print_str("b = ")
b = a.bit_decompose()
for i in b:print_str("%s",i.reveal())
print_ln()

注意,它的分解结果应该从倒数第一个“1”开始倒着看。

15. if_else(a,b)

s = sint(1)
a = sint(12)
b = sint(13)
print_ln("%s",s.if_else(a,b).reveal())

根据定义的sint类型变量,如果该变量的值是0,则if_else()返回b;该变量的值是1,则if_else()返回a。

运行结果:

关于sint类型暂时就更到这里,没有更全,主要函数我都介绍了,还有一些有点复杂搞不明白,还有一些作者都没有实现,都比较小众,不打算更了。

这篇关于安全多方计算之SPDZ开源库语法详解——Sint的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374466

相关文章

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Java中的@SneakyThrows注解用法详解

《Java中的@SneakyThrows注解用法详解》:本文主要介绍Java中的@SneakyThrows注解用法的相关资料,Lombok的@SneakyThrows注解简化了Java方法中的异常... 目录前言一、@SneakyThrows 简介1.1 什么是 Lombok?二、@SneakyThrows

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

JAVA保证HashMap线程安全的几种方式

《JAVA保证HashMap线程安全的几种方式》HashMap是线程不安全的,这意味着如果多个线程并发地访问和修改同一个HashMap实例,可能会导致数据不一致和其他线程安全问题,本文主要介绍了JAV... 目录1. 使用 Collections.synchronizedMap2. 使用 Concurren

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT