安全多方计算之SPDZ开源库语法详解——Sint

2023-11-09 06:30

本文主要是介绍安全多方计算之SPDZ开源库语法详解——Sint,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安全类型:sint (Secret integer in the protocol-specific domain.)

Most non-linear operations require compile-time parameters for bit length and statistical security. They default to the global parameters set by program.set_bit_length() and program.set_security(). The acceptable minimum for statistical security is considered to be 40. The defaults for the parameters is output at the beginning of the compilation.

If the computation domain is modulo a power of two, the operands will be truncated to the bit length, and the security parameter does not matter. Modulo prime, the behaviour is undefined and potentially insecure if the operands are longer than the bit length.

sint是SPDZ定义的安全类型,属于隐私数据,只用通过特定的方法才能公开。

目录

1. __init__()

2. get_input_from()、get_raw_input_from()

3. reveal_to()

4. get_random_int()

5. get_random()

6. 比较运算

7. 取相反数、取绝对值

8. pow2()、__rpow__()

9. 移位操作

10.long_one()

11.int_div()

12. mod2m()

13. __mod__()

14. bit_decompose()

15. if_else(a,b)

1. __init__()

__init__(val=Nonesize=None)

Parameters:
  • val – initialization (sint/cint/regint/int/cgf2n or list thereof)
  • size – vector size (int), defaults to 1 or size of list
a = sint()
sint.__init__(a)
a.__init__(10)
print_str("a: %s\n", a.reveal())

2. get_input_from()、get_raw_input_from()

get_input_from(cls, player)、get_raw_input_from(cls, player)

从player中接受数据。两个函数类似。用法这里不写了,可以看下一个函数。

3. reveal_to()

reveal_to(self, player)

将sint数泄露给player。我觉得reveal这个词用的很准确,sint就是定义的秘密数,从安全方面考虑,不应该泄露给别人,这个函数是将一个秘密数reveal to 一个 player。reveal这个词可以提醒开发人员慎用。

在下面这个程序里,我定义了一个sint类型变量a,a从player0中接受数据。加一之后把它reveal给了player1。结果可以在Player-Data/Private-Output-1里查看

a = sint()
print_ln("a = %s",a.reveal())
a = sint.get_input_from(0)
a = a + 1
print_ln("a = %s",a.reveal())
a.reveal_to(1)

程序编译:

./compile.py test_sint

生成证书: 

Scripts/setup-ssl.sh 2

输入数据:

echo 1 > Player-Data/Input-P0-0

执行程序,开两个不同终端:

./semi-party.x -N 2 -p 0 test_sint
./semi-party.x -N 2 -p 1 test_sint

程序执行完毕,我们可以查看Player-Data/Private-Output-1是否有写入数据:

确实是写入了数据,但是这个数据乱码,不知道什么原因,猜测是加密过的。它生成了好几个数据文件,可以查看下,其他的数据都是空的,因为程序并没有对他们写入数据。

4. get_random_int()

get_random_int(cls, bits)  生成一个“bits”长度比特的随机数。下面例子是生成3比特长的随机数(0~7之间的随机数)

for i in range(5):a = sint.get_random_int(3)print_ln("a = %s",a.reveal())

5. get_random()

get_random(cls)

Secret random ring element according to security model. 生成一个环上的随机数。

for i in range(3):b = sint.get_random()print_ln("b = %s",b.reveal())

编译:

./compile.py test_sint

执行:  执行时可以使用-R指定环的大小(这里是2^128)。

Scripts/ring.sh -R 128 test_sint

6. 比较运算

小于:less_than = __lt__()

大于:greater_than = __gt__()

小于等于: less_equal = __le__()

大于等于: greater_equal = __ge__()

等于: equal = __eq__()

不等于: not_equal = __ne__()

a = sint(12)
b = sint(13)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
print_ln("less_than: %s", sint.__lt__(a,b).reveal())
print_ln("greater_than: %s", sint.__gt__(a,b).reveal())
print_ln("less_equal: %s", sint.__le__(a,b).reveal())
print_ln("greater_equal: %s", sint.__ge__(a,b).reveal())
print_ln("equal: %s", sint.__eq__(a,b).reveal())
print_ln("not_equal: %s", sint.__ne__(a,b).reveal()) 

 编译的时候要指定环数。程序运行结果:

7. 取相反数、取绝对值

__neg__(self)  取相反数a = 0 - a

__abs__(self) 取绝对值a = |a|

a = sint(12)
b = sint(20)
e = a - b
c1 = sint.__neg__(b-a)
c2 = sint.__neg__(a-b)
d = sint.__abs__(e)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
print_ln("c1: %s",c1.reveal())
print_ln("c2: %s",c2.reveal())
print_ln("b: %s",d.reveal())

编译的时候要加-R指定环数。它不能表示负数,所以在你打印一个负数时,他会打印0,原因未知。 

8. pow2()、__rpow__()

pow2(self, bit_length=None, security=None)   官方描述是:Secret power of two.

输出2的n次幂。一个很奇怪的函数。

平常的幂函数一般输入一个n然后计算2的n次幂。但是这个函数不是这样的。这个函数的输入是比特长度。

假设你的输入的比特长度值是 i 。再设 i 的取值在2^{j-1}+1<i<2^j, 那么这个函数随机返回序列[2^0,2^1,2^2,...,2^{2^j-1}]中的一个值。

下面程序里我执行了100次这个函数,他返回的值都是(0,2^15)之间的2次幂。(i=13时,是在2^3+1到2^4之间的,那么它的返回值都是(0, 2^{2^{4}-1})之间的2次幂。

n = 100
a = sint(0)
for i in range(n):b = a.pow2(13)print_ln("b = %s",b.reveal())

下面是部分执行结果:最大值时32768=2^15

__rpow__(self, base)

我就没见你这么糊弄的。下面是官方源代码:

    def __rpow__(self, base):""" Secret power computation. Base must be two.Uses global parameters for bit length and security. """if base == 2:return self.pow2()else:return NotImplemented

基数等于2调用pow2

基数不等于2,NotImplemented ???

9. 移位操作

__lshift__(self, other, bit_length=None, security=None) 左移

__rshift__(self, other, bit_length=None, security=None, signed=True) 右移

__rlshift__(self, other)  =  other * 2**self

__rrshift__(self, other):rlshift的逆操作

a = sint(39)
print_ln("a: %s",a.reveal())
b = a.__lshift__(2)
print_ln("b: %s",b.reveal())
c = b.__rshift__(2)
print_ln("c: %s",c.reveal())b = a.__rlshift__(2)
print_ln("b: %s",b.reveal())
c = b.__rrshift__(2).__abs__()
print_ln("c: %s",c.reveal())

10.long_one()

返回1.

不知道这个函数有什么意义。

c = sint.long_one()
print_ln("c: %s",c)

11.int_div()

int_div(self, other, bit_length=None, security=None)

除法运算,这里的除法运算是在域上的除法,我们知道在群环域中,只有域可以进行除法运算。这个函数卡了很久,只要是卡在编译和执行方法上,编译虽然通过,但执行总是出错。

这个实例计算6/3,也就是计算6*(3^{-1})计算有限域的逆大概是个耗时运算吧,运行起来特别慢。

a = sint(6)
b = sint(3)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
c = a.int_div(b,32)
print_ln("c: %s",c.reveal())

因为是域上的运算,编译的时候可以加-F执行域的大小,也可以不加(默认为64比特):

./compile.py -F 32 test_sint

我使用了两种方法执行,一个是基于OT协议的semi-party.x;一个是基于半同态加密的hemi-party.x,大家可以感受下执行时间的差距。

               

这个函数返回值也是sint类型。下面是a、b取随机数的例子

12. mod2m()

mod2m(self, m, bit_length=None, security=None, signed=True)

模运算,模2^m

a = sint(456463)
print_ln("a = %s", a.reveal())
b = a.mod2m(1)
print_ln("b = %s mod (2^1)", b.reveal())
b = a.mod2m(2)
print_ln("b = %s mod (2^2)", b.reveal())
b = a.mod2m(3)
print_ln("b = %s mod (2^3)", b.reveal())
b = a.mod2m(4)
print_ln("b = %s mod (2^4)", b.reveal())
b = a.mod2m(5)
print_ln("b = %s mod (2^5)", b.reveal())
b = a.mod2m(6)
print_ln("b = %s mod (2^6)", b.reveal())

13. __mod__()

__mod__(self, modulus)

模运算,模数为传入的参数modulus

emmm……理论上可以模任意的modulus,但是开发者只实现了模2,其他的模数没有 实现。也就是说只有模2时才能编译通过,其他情况编译不通过。

模2时:

a = sint(456463)
print_ln("a = %s", a.reveal())
b = a.__mod__(2)
print_ln("b = %s mod (2)", b.reveal())

模其他数时报错:

14. bit_decompose()

bit_decompose(self, bit_length=None, security=None)

将整数分解为二进制

a = sint(456463)
print_ln("a = %s", a.reveal())
print_str("b = ")
b = a.bit_decompose()
for i in b:print_str("%s",i.reveal())
print_ln()a = sint(46)
print_ln("a = %s", a.reveal())
print_str("b = ")
b = a.bit_decompose()
for i in b:print_str("%s",i.reveal())
print_ln()

注意,它的分解结果应该从倒数第一个“1”开始倒着看。

15. if_else(a,b)

s = sint(1)
a = sint(12)
b = sint(13)
print_ln("%s",s.if_else(a,b).reveal())

根据定义的sint类型变量,如果该变量的值是0,则if_else()返回b;该变量的值是1,则if_else()返回a。

运行结果:

关于sint类型暂时就更到这里,没有更全,主要函数我都介绍了,还有一些有点复杂搞不明白,还有一些作者都没有实现,都比较小众,不打算更了。

这篇关于安全多方计算之SPDZ开源库语法详解——Sint的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374466

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构