关于二叉树(创建、遍历、画图)(个人学习使用,非专业)

2023-11-09 00:40

本文主要是介绍关于二叉树(创建、遍历、画图)(个人学习使用,非专业),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目要求

主要内容:

设计一个与二叉树基本操作相关的程序。

程序基本要求如下:

①以树状形式输出;

②以先序、中序、后序三种方式输出;

③统计输出二叉树的结点总数、叶子总数、树高。

目录

题目要求

一、源代码

二、分析

三、基础函数:

1、构造二叉树

2、三个遍历

3、计算结点总数、叶子结点树、树高

基础函数的运行举例

 4、画图部分(有需要的小伙伴可以画图分析就很好理解了)

这里有误解!!!

修改之后 

再次修改:此次修改是为了不让两个元素贴在一起,但是外观还是有瑕疵


一、源代码

#include <bits/stdc++.h>
using namespace std;
#define Max 200typedef struct Node{char date;  //结点数据域struct Node *lchild,*rchild;    //左右孩子指针int x,y;    //横纵坐标
}Node,*tree;char t[Max][Max];//我们规定画布大小为:Max * Max
int minX=Max,maxX=0;//函数声明
void index();
void creatTree(tree &T ,int x,int y);
void paintTree(tree T);
void DLR(tree &T);
void LDR(tree T);
void LRD(tree T);
int countNode(tree T);
int countLeaf(tree T);
int treeHigh(tree T);int main() {index();tree T;while (1){cout << "请选择要执行的操作: ";int choose;cin >> choose;switch (choose) {case 0://创建case 1: {//调试用例:ab#df##g##cx##e##cout << "请按先序输入,以#为结束: ";creatTree(T, 0, 0);break;}//画树case 2 : {int h=treeHigh(T);cout << "画树如下:" <<endl;memset(t,' ',sizeof(t));paintTree(T);for(int i=0;i<2*h;i++){for(int j=minX;j<=maxX;j++){cout << t[j][i];}cout << endl;}break;}//三序遍历case 3:{cout << "先序遍历的结果为: ";DLR(T);cout << endl;cout << "中序遍历的结果为: ";LDR(T);cout << endl;cout << "后序遍历的结果为: ";LRD(T);cout << endl;break;}//树的属性case 4:{cout << "结点总数: "<< countNode(T) << endl;cout << "叶子总数: "<< countLeaf(T) << endl;cout << "树的高度: "<< treeHigh(T) << endl;break;}default :cout << "请选择合法的操作" <<endl;}}
}//菜单
void index()
{cout << "********** 功能如下 **********" << endl;cout << "\t" << "0 ----> 退出程序" << endl;cout << "\t" << "1 ----> 先序建立一个树" << endl;cout << "\t" << "2 ----> 画二叉树" << endl;cout << "\t" << "3 ----> 三序遍历" << endl;cout << "\t" << "4 ----> 树的属性" << endl;
}//画图
void paintTree(tree T)
{if(T){// Max/2的使用目的是:由于原坐标是关于y轴对称的,因此我们要将整个图像沿x轴平移if(' '== t[T->x + Max/2][2 * T->y]) t[T->x + Max/2][2 * T->y]=T->date;//修改之后else t[T->x + Max/2+1][2 * T->y]=T->date;    //若有字符,后移//修改之前:// else t[T->x + Max/2][2 * T->y]='!'; //重复就显示'!'if(T->lchild){t[T->x + Max/2 -1][2 * T->y +1]='/';paintTree(T->lchild);}if(T->rchild){t[T->x + Max/2 +1][2 * T->y +1]='\\';paintTree(T->rchild);}}
}//先序建立二叉树,并且给出坐标
void creatTree(tree &T ,int x,int y)
{char c;cin >> c;if(c == '#') T=NULL;else{   //传值T=new Node;T->date=c;	T->x=x;T->y=y;creatTree(T->lchild,x-2,y+1); //左子树坐标,次数横坐标偏移量为2是为了方便在中间插入'/'creatTree(T->rchild,x+2,y+1); //右子树坐标//更新最小最大横坐标maxX=max(maxX,x+Max/2+1);	minX=min(minX,x+Max/2-1);}
}
//先序遍历
void DLR(tree  &T)
{if(T){cout << T->date << " ";DLR(T->lchild);DLR(T->rchild);}
}
//中序遍历
void LDR(tree T)
{if(T){LDR(T->lchild);cout << T->date << " ";LDR(T->rchild);}
}
//后序遍历
void LRD(tree T)
{if(T){LRD(T->lchild);LRD(T->rchild);cout << T->date << " ";}
}
//结点总数
int countNode(tree T)
{int l,r;//左右子树的结点数if(!T) return  0;if(!T->rchild && T->rchild) return 1;else{l= countNode(T->lchild);r= countNode(T->rchild);return l+r+1;}
}
//叶子总数
int countLeaf(tree T)
{int leaf;if(!T) return  0;if(!T->rchild && !T->rchild) return 1;else leaf= countLeaf(T->lchild)+ countLeaf(T->rchild);return  leaf;
}
//树高
int treeHigh(tree T)
{int lh,rh;if(!T) return 0;else{lh= treeHigh(T->lchild);rh= treeHigh(T->rchild);return lh>rh ? lh+1 : rh+1;}
}

二、分析

由于我们题目要求画图,这里我打算使用坐标,故而我们将结构体定义如下:

typedef struct Node{char date;  //结点数据域struct Node *lchild,*rchild;    //左右孩子指针int x,y;    //横纵坐标
}Node,*tree;

这里我选择用一个二维数组作为画布:

char t[Max][Max];//我们规定画布大小为:Max * Max

三、基础函数:

1、构造二叉树

//先序建立二叉树,并且给出坐标
void creatTree(tree &T ,int x,int y)
{char c;cin >> c;if(c == '#') T=NULL;else{   //传值T=new Node;T->date=c;	T->x=x;T->y=y;creatTree(T->lchild,x-2,y+1); //左子树坐标,次数横坐标偏移量为2是为了方便在中间插入'/'creatTree(T->rchild,x+2,y+1); //右子树坐标}
}

2、三个遍历

//先序遍历
void DLR(tree  &T)
{if(T){cout << T->date << " ";DLR(T->lchild);DLR(T->rchild);}
}
//中序遍历
void LDR(tree T)
{if(T){LDR(T->lchild);cout << T->date << " ";LDR(T->rchild);}
}
//后序遍历
void LRD(tree T)
{if(T){LRD(T->lchild);LRD(T->rchild);cout << T->date << " ";}
}

3、计算结点总数、叶子结点树、树高

//结点总数
int countNode(tree T)
{int l,r;//左右子树的结点数if(!T) return  0;if(!T->rchild && T->rchild) return 1;else{l= countNode(T->lchild);r= countNode(T->rchild);return l+r+1;}
}
//叶子总数
int countLeaf(tree T)
{int leaf;if(!T) return  0;if(!T->rchild && !T->rchild) return 1;else leaf= countLeaf(T->lchild)+ countLeaf(T->rchild);return  leaf;
}
//树高
int treeHigh(tree T)
{int lh,rh;if(!T) return 0;else{lh= treeHigh(T->lchild);rh= treeHigh(T->rchild);return lh>rh ? lh+1 : rh+1;}
}

基础函数的运行举例

本次用到的输入样例:AB#DF##G##C#E##

图示如下:

 结果如下:(黄色部分)

 

 4、画图部分(有需要的小伙伴可以画图分析就很好理解了)

原版:

//画图1(此函数以美观为主)
void paintTree(tree T)
{if(T){// Max/2的使用目的是:由于原坐标是关于y轴对称的,因此我们要将整个图像沿x轴平移if(' '== t[T->x + Max/2][2 * T->y]) t[T->x + Max/2][2 * T->y]=T->date;else t[T->x + Max/2][2 * T->y]='!'; //重复就显示'!'if(T->lchild){t[T->x + Max/2 -1][2 * T->y +1]='/';paintTree(T->lchild);}if(T->rchild){t[T->x + Max/2 +1][2 * T->y +1]='\\';paintTree(T->rchild);}}
}

结果如下:

 

这里有误解!!!

我们更换一个测试用例:124##5##36##7##

用例结构如下:

 运行结果如下:

修改之后 

在次我们可以看到,这个办法会隐藏一部分的数据,当然我们也可以加以修改:

//画图1(此函数以美观为主)
void paintTree(tree T)
{if(T){// Max/2的使用目的是:由于原坐标是关于y轴对称的,因此我们要将整个图像沿x轴平移if(' '== t[T->x + Max/2][2 * T->y]) t[T->x + Max/2][2 * T->y]=T->date;//修改之后:else t[T->x + Max/2+1][2 * T->y]=T->date;//修改之前:// else t[T->x + Max/2][2 * T->y]='!'; //重复就显示'!'if(T->lchild){t[T->x + Max/2 -1][2 * T->y +1]='/';paintTree(T->lchild);}if(T->rchild){t[T->x + Max/2 +1][2 * T->y +1]='\\';paintTree(T->rchild);}}
}

运行结果如下:

再次修改:此次修改是为了不让两个元素贴在一起,但是外观还是有瑕疵

测试用例:aaaa##a##aa##a##aaa##a##aa##a##

void paintTreeplus(tree T,int l,int r)
{int mid=(l+r)/2;if(T){t[mid][2 * T->y]=T->date;if(T->lchild){for(int i=(mid+l)/2;i<mid;i++) t[i][2 * T->y+1] ='/';paintTreeplus(T->lchild,l,mid);}if(T->rchild){for(int i=mid+1;i<=(mid+r)/2;i++) t[i][2 * T->y+1] ='\\';paintTreeplus(T->rchild,mid,r);}}
}
int main()
{int minX=0,maxX=pow(2,h)+1;paintTreeplus(T,minX,maxX);for(int i=0;i<2*h;i++){for(int j=minX;j<=maxX;j++){cout << t[j][i];}cout << endl;}
}

运行结果如下:

你悟解了吗

本篇为个人学习阶段所写,请各位大佬多多斧正。

这篇关于关于二叉树(创建、遍历、画图)(个人学习使用,非专业)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373281

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求