关于二叉树(创建、遍历、画图)(个人学习使用,非专业)

2023-11-09 00:40

本文主要是介绍关于二叉树(创建、遍历、画图)(个人学习使用,非专业),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目要求

主要内容:

设计一个与二叉树基本操作相关的程序。

程序基本要求如下:

①以树状形式输出;

②以先序、中序、后序三种方式输出;

③统计输出二叉树的结点总数、叶子总数、树高。

目录

题目要求

一、源代码

二、分析

三、基础函数:

1、构造二叉树

2、三个遍历

3、计算结点总数、叶子结点树、树高

基础函数的运行举例

 4、画图部分(有需要的小伙伴可以画图分析就很好理解了)

这里有误解!!!

修改之后 

再次修改:此次修改是为了不让两个元素贴在一起,但是外观还是有瑕疵


一、源代码

#include <bits/stdc++.h>
using namespace std;
#define Max 200typedef struct Node{char date;  //结点数据域struct Node *lchild,*rchild;    //左右孩子指针int x,y;    //横纵坐标
}Node,*tree;char t[Max][Max];//我们规定画布大小为:Max * Max
int minX=Max,maxX=0;//函数声明
void index();
void creatTree(tree &T ,int x,int y);
void paintTree(tree T);
void DLR(tree &T);
void LDR(tree T);
void LRD(tree T);
int countNode(tree T);
int countLeaf(tree T);
int treeHigh(tree T);int main() {index();tree T;while (1){cout << "请选择要执行的操作: ";int choose;cin >> choose;switch (choose) {case 0://创建case 1: {//调试用例:ab#df##g##cx##e##cout << "请按先序输入,以#为结束: ";creatTree(T, 0, 0);break;}//画树case 2 : {int h=treeHigh(T);cout << "画树如下:" <<endl;memset(t,' ',sizeof(t));paintTree(T);for(int i=0;i<2*h;i++){for(int j=minX;j<=maxX;j++){cout << t[j][i];}cout << endl;}break;}//三序遍历case 3:{cout << "先序遍历的结果为: ";DLR(T);cout << endl;cout << "中序遍历的结果为: ";LDR(T);cout << endl;cout << "后序遍历的结果为: ";LRD(T);cout << endl;break;}//树的属性case 4:{cout << "结点总数: "<< countNode(T) << endl;cout << "叶子总数: "<< countLeaf(T) << endl;cout << "树的高度: "<< treeHigh(T) << endl;break;}default :cout << "请选择合法的操作" <<endl;}}
}//菜单
void index()
{cout << "********** 功能如下 **********" << endl;cout << "\t" << "0 ----> 退出程序" << endl;cout << "\t" << "1 ----> 先序建立一个树" << endl;cout << "\t" << "2 ----> 画二叉树" << endl;cout << "\t" << "3 ----> 三序遍历" << endl;cout << "\t" << "4 ----> 树的属性" << endl;
}//画图
void paintTree(tree T)
{if(T){// Max/2的使用目的是:由于原坐标是关于y轴对称的,因此我们要将整个图像沿x轴平移if(' '== t[T->x + Max/2][2 * T->y]) t[T->x + Max/2][2 * T->y]=T->date;//修改之后else t[T->x + Max/2+1][2 * T->y]=T->date;    //若有字符,后移//修改之前:// else t[T->x + Max/2][2 * T->y]='!'; //重复就显示'!'if(T->lchild){t[T->x + Max/2 -1][2 * T->y +1]='/';paintTree(T->lchild);}if(T->rchild){t[T->x + Max/2 +1][2 * T->y +1]='\\';paintTree(T->rchild);}}
}//先序建立二叉树,并且给出坐标
void creatTree(tree &T ,int x,int y)
{char c;cin >> c;if(c == '#') T=NULL;else{   //传值T=new Node;T->date=c;	T->x=x;T->y=y;creatTree(T->lchild,x-2,y+1); //左子树坐标,次数横坐标偏移量为2是为了方便在中间插入'/'creatTree(T->rchild,x+2,y+1); //右子树坐标//更新最小最大横坐标maxX=max(maxX,x+Max/2+1);	minX=min(minX,x+Max/2-1);}
}
//先序遍历
void DLR(tree  &T)
{if(T){cout << T->date << " ";DLR(T->lchild);DLR(T->rchild);}
}
//中序遍历
void LDR(tree T)
{if(T){LDR(T->lchild);cout << T->date << " ";LDR(T->rchild);}
}
//后序遍历
void LRD(tree T)
{if(T){LRD(T->lchild);LRD(T->rchild);cout << T->date << " ";}
}
//结点总数
int countNode(tree T)
{int l,r;//左右子树的结点数if(!T) return  0;if(!T->rchild && T->rchild) return 1;else{l= countNode(T->lchild);r= countNode(T->rchild);return l+r+1;}
}
//叶子总数
int countLeaf(tree T)
{int leaf;if(!T) return  0;if(!T->rchild && !T->rchild) return 1;else leaf= countLeaf(T->lchild)+ countLeaf(T->rchild);return  leaf;
}
//树高
int treeHigh(tree T)
{int lh,rh;if(!T) return 0;else{lh= treeHigh(T->lchild);rh= treeHigh(T->rchild);return lh>rh ? lh+1 : rh+1;}
}

二、分析

由于我们题目要求画图,这里我打算使用坐标,故而我们将结构体定义如下:

typedef struct Node{char date;  //结点数据域struct Node *lchild,*rchild;    //左右孩子指针int x,y;    //横纵坐标
}Node,*tree;

这里我选择用一个二维数组作为画布:

char t[Max][Max];//我们规定画布大小为:Max * Max

三、基础函数:

1、构造二叉树

//先序建立二叉树,并且给出坐标
void creatTree(tree &T ,int x,int y)
{char c;cin >> c;if(c == '#') T=NULL;else{   //传值T=new Node;T->date=c;	T->x=x;T->y=y;creatTree(T->lchild,x-2,y+1); //左子树坐标,次数横坐标偏移量为2是为了方便在中间插入'/'creatTree(T->rchild,x+2,y+1); //右子树坐标}
}

2、三个遍历

//先序遍历
void DLR(tree  &T)
{if(T){cout << T->date << " ";DLR(T->lchild);DLR(T->rchild);}
}
//中序遍历
void LDR(tree T)
{if(T){LDR(T->lchild);cout << T->date << " ";LDR(T->rchild);}
}
//后序遍历
void LRD(tree T)
{if(T){LRD(T->lchild);LRD(T->rchild);cout << T->date << " ";}
}

3、计算结点总数、叶子结点树、树高

//结点总数
int countNode(tree T)
{int l,r;//左右子树的结点数if(!T) return  0;if(!T->rchild && T->rchild) return 1;else{l= countNode(T->lchild);r= countNode(T->rchild);return l+r+1;}
}
//叶子总数
int countLeaf(tree T)
{int leaf;if(!T) return  0;if(!T->rchild && !T->rchild) return 1;else leaf= countLeaf(T->lchild)+ countLeaf(T->rchild);return  leaf;
}
//树高
int treeHigh(tree T)
{int lh,rh;if(!T) return 0;else{lh= treeHigh(T->lchild);rh= treeHigh(T->rchild);return lh>rh ? lh+1 : rh+1;}
}

基础函数的运行举例

本次用到的输入样例:AB#DF##G##C#E##

图示如下:

 结果如下:(黄色部分)

 

 4、画图部分(有需要的小伙伴可以画图分析就很好理解了)

原版:

//画图1(此函数以美观为主)
void paintTree(tree T)
{if(T){// Max/2的使用目的是:由于原坐标是关于y轴对称的,因此我们要将整个图像沿x轴平移if(' '== t[T->x + Max/2][2 * T->y]) t[T->x + Max/2][2 * T->y]=T->date;else t[T->x + Max/2][2 * T->y]='!'; //重复就显示'!'if(T->lchild){t[T->x + Max/2 -1][2 * T->y +1]='/';paintTree(T->lchild);}if(T->rchild){t[T->x + Max/2 +1][2 * T->y +1]='\\';paintTree(T->rchild);}}
}

结果如下:

 

这里有误解!!!

我们更换一个测试用例:124##5##36##7##

用例结构如下:

 运行结果如下:

修改之后 

在次我们可以看到,这个办法会隐藏一部分的数据,当然我们也可以加以修改:

//画图1(此函数以美观为主)
void paintTree(tree T)
{if(T){// Max/2的使用目的是:由于原坐标是关于y轴对称的,因此我们要将整个图像沿x轴平移if(' '== t[T->x + Max/2][2 * T->y]) t[T->x + Max/2][2 * T->y]=T->date;//修改之后:else t[T->x + Max/2+1][2 * T->y]=T->date;//修改之前:// else t[T->x + Max/2][2 * T->y]='!'; //重复就显示'!'if(T->lchild){t[T->x + Max/2 -1][2 * T->y +1]='/';paintTree(T->lchild);}if(T->rchild){t[T->x + Max/2 +1][2 * T->y +1]='\\';paintTree(T->rchild);}}
}

运行结果如下:

再次修改:此次修改是为了不让两个元素贴在一起,但是外观还是有瑕疵

测试用例:aaaa##a##aa##a##aaa##a##aa##a##

void paintTreeplus(tree T,int l,int r)
{int mid=(l+r)/2;if(T){t[mid][2 * T->y]=T->date;if(T->lchild){for(int i=(mid+l)/2;i<mid;i++) t[i][2 * T->y+1] ='/';paintTreeplus(T->lchild,l,mid);}if(T->rchild){for(int i=mid+1;i<=(mid+r)/2;i++) t[i][2 * T->y+1] ='\\';paintTreeplus(T->rchild,mid,r);}}
}
int main()
{int minX=0,maxX=pow(2,h)+1;paintTreeplus(T,minX,maxX);for(int i=0;i<2*h;i++){for(int j=minX;j<=maxX;j++){cout << t[j][i];}cout << endl;}
}

运行结果如下:

你悟解了吗

本篇为个人学习阶段所写,请各位大佬多多斧正。

这篇关于关于二叉树(创建、遍历、画图)(个人学习使用,非专业)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373281

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,