i.MX6U SPI浅析

2023-11-08 13:50
文章标签 浅析 spi mx6u

本文主要是介绍i.MX6U SPI浅析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.SPI简介

SPI 全称是 SerialPerripheral Interface,也就是串行外围设备接口。SPI 是 Motorola 公司推出的一种同步串行接口
技术,是一种高速、全双工的同步通信总线,SPI 时钟频率相比 I2C 要高很多,最高可以工作在上百 MHz。SPI 以主从方式工作,通常是有一个主设备和一个或多个从设备,一般 SPI 需要4 根线,但是也可以使用三根线(单向传输),本章我们讲解标准的 4 线 SPI,这四根线如下:

  • CS/SS,Slave Select/Chip Select,这个是片选信号线,用于选择需要进行通信的从设备。I2C 主机是通过发送从机设备地址来选择需要进行通信的从机设备的,SPI 主机不需要发送从机设备,直接将相应的从机设备片选信号拉低即可。
  • SCK,Serial Clock,串行时钟,和 I2C 的 SCL 一样,为 SPI 通信提供时钟。
  • MOSI/SDO,Master Out Slave In/Serial Data Output,简称主出从入信号线,这根数据线只能用于主机向从机发送数据,也就是主机输出,从机输入。
  • MISO/SDI,Master In Slave Out/Serial Data Input,简称主入从出信号线,这根数据线只能用户从机向主机发送数据,也就是主机输入,从机输出。

SPI 通信都是由主机发起的,主机需要提供通信的时钟信号。主机通过 SPI 线连接多个从设备的结构如下图 所示

四种工作模式:改变串行时钟极性(CPOL)和相位(CPHA)能得到四种工作模式

  • CPOL=0,串行时钟空闲状态为低电平。
  • CPOL=1,串行时钟空闲状态为高电平。
  • CPHA=0,串行时钟的第一个跳变沿(上升沿或下降沿)采集数据。
  • CPHA=1,串行时钟的第二个跳变沿(上升沿或下降沿)采集数据。

 以 CPOL=0,CPHA=0 这个工作模式为例,SPI 进行全双工通信的时序如图

主机输出11010010   主机读取数据位01100110

 

 I.MX6U ECSPI 简介

•全双工同步串行接口
•主/从配置
•四个片选(SS)信号支持多个外设
•传输继续功能允许无限长度的数据传输
•32*64的FIFO,用于发送和接收数据
•片选(SS)和SPI时钟(SCLK)的极性和相位是可配置的
•直接内存访问(DMA)支持
•最大工作频率直至参考时钟频率。

 重要寄存器:

1.接收数据寄存器(ECSPIx_RXDATA)

接收数据寄存器(ECSPI_RXDATA)是只读寄存器,它构成前几位64 x 32的字接收FIFO。 该寄存器保存从外部接收的数据
数据传输期间的SPI设备。 仅允许字大小的读取操作。

2.发送数据寄存器(ECSPIx_TXDATA)

发送数据(ECSPI_TXDATA)寄存器是一个只写数据寄存器,保存将要发送的数据

3.控制寄存器(ECSPIx_CONREG)

BURST_LENGTH(bit31:20) :突发长度,设置 SPI 的突发传输数据长度,在一次 SPI 发送中最大可以发送 2^12bit 数据。可以设置 0X000~0XFFF,分别对应 1~2^12bit。我们一般设置突发长度为一个字节,也就是 8bit,BURST_LENGTH=7。

CHANNEL_SELECT(bit19:18):SPI 通道选择,一个 ECSPI 有四个硬件片选信号,每个片选信号是一个硬件通道,虽然我们本章实验使用的软件片选,但是 SPI 通道还是要选择的。可设置为 0~3,分别对应通道 0~3。

DRCTL(bit17:16) :SPI 的 SPI_RDY 信号控制位,用于设置 SPI_RDY 信号,为 0 的话不关心 SPI_RDY 信号;为 1 的话 SPI_RDY 信号为边沿触发;为 2 的话 SPI_DRY 是电平触发。


PRE_DIVIDER(bit15:12): SPI 预分频,ECSPI 时钟频率使用两步来完成分频,此位设置的是第一步,可设置 0~15,分别对应 1~16 分频。


POST_DIVIDER(bit11:8) :SPI 分频值,ECSPI 时钟频率的第二步分频设置,分频值为2^POST_DIVIDER。


CHANNEL_MODE(bit7:4): SPI 通道主/从模式设置,CHANNEL_MODE[3:0]分别对应 SPI通道 3~0,为 0 的话就是设置为从模式,如果为 1 的话就是主模式。比如设置为 0X01 的话就是设置通道 0 为主模式。


SMC(bit3):开始模式控制,此位只能在主模式下起作用,为 0 的话通过 XCH 位来开启 SPI突发访问,为 1 的话只要向 TXFIFO 写入数据就开启 SPI 突发访问。


XCH(bit2) :此位只在主模式下起作用,当 SMC 为 0 的话此位用来控制 SPI 突发访问的开启。


HT(bit1) :HT 模式是能位,I.MX6ULL 不支持。


EN(bit0) :SPI 使能位,为 0 的话关闭 SPI,为 1 的话使能 SPI。

4.配置寄存器(ECSPIx_CONFIGREG)

HT_LENGTH(bit28:24):HT 模式下的消息长度设置,I.MX6ULL 不支持。


SCLK_CTL(bit23:20):设置 SCLK 信号线空闲状态电平,SCLK_CTL[3:0]分别对应通道3~0,为 0 的话 SCLK 空闲状态为低电平,为 1 的话 SCLK 空闲状态为高电平。

DATA_CTL(bit19:16):设置 DATA 信号线空闲状态电平,DATA_CTL[3:0]分别对应通道3~0,为 0 的话 DATA 空闲状态为高电平,为 1 的话 DATA 空闲状态为低电平。

SS_POL(bit15:12) :设置 SPI 片选信号极性设置,SS_POL[3:0]分别对应通道 3~0,为 0 的话片选信号低电平有效,为 1 的话片选信号高电平有效。

SCLK_POL(bit7:4):SPI 时钟信号极性设置,也就是 CPOL,SCLK_POL[3:0]分别对应通道 3~0,为 0 的话 SCLK 高电平有效(空闲的时候为低电平),为 1 的话 SCLK 低电平有效(空闲的时候为高电平)。

SCLK_PHA(bit3:0): SPI时钟相位设置,也就是CPHA,SCLK_PHA[3:0]分别对应通道3~0,为 0 的话串行时钟的第一个跳变沿(上升沿或下降沿)采集数据,为 1 的话串行时钟的第二个跳变沿(上升沿或下降沿)采集数据。

5.采样周期控制寄存器(ECSPIx_PERIODREG)

CSD_CTL(bit21:16) :片选信号延时控制位,用于设置片选信号和第一个 SPI 时钟信号之间的时间间隔,范围为 0~63。
CSRC(bit15):SPI 时钟源选择,为 0 的话选择 SPI CLK 为 SPI 的时钟源,为 1 的话选择32.768KHz 的晶振为 SPI 时钟源。我们一般选择 SPI CLK 作为 SPI 时钟源,

 

CCM_CSCDR2寄存器控制SPI时钟选择和分频 

 SAMPLE_PERIO(bit14:0): 控制采样周期,可设置为 0~0X7FFF 分别对应 0~32767 个周期。

6.状态寄存器(ECSPIx_STATREG)

TC(bit7):传输完成标志位,为 0 表示正在传输,为 1 表示传输完成。
RO(bit6):RXFIFO 溢出标志位,为 0 表示 RXFIFO 无溢出,为 1 表示 RXFIFO 溢出。
RF(bit5):RXFIFO 空标志位,为 0 表示 RXFIFO 不为空,为 1 表示 RXFIFO 为空。
RDR(bit4) :RXFIFO 数据请求标志位,此位为 0 表示 RXFIFO 里面的数据不大于RX_THRESHOLD,此位为 1 的话表示 RXFIFO 里面的数据大于 RX_THRESHOLD。
RR(bit3) :RXFIFO 就绪标志位,为 0 的话 RXFIFO 没有数据,为 1 的话表示 RXFIFO 中至少有一个字的数据。
TF(bit2) :TXFIFO 满标志位,为 0 的话表示 TXFIFO 不为满,为 1 的话表示 TXFIFO 为满。
TDR(bit1): TXFIFO 数据请求标志位,为 0 表示 TXFIFO 中的数据大于 TX_THRESHOLD,为 1 表示 TXFIFO 中的数据不大于 TX_THRESHOLD。

TE(bit0): TXFIFO 空标志位,为 0 表示 TXFIFO 中至少有一个字的数据,为 1 表示 TXFIFO为空。

这篇关于i.MX6U SPI浅析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370283

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

(入门篇)JavaScript 网页设计案例浅析-简单的交互式图片轮播

网页设计已经成为了每个前端开发者的必备技能,而 JavaScript 作为前端三大基础之一,更是为网页赋予了互动性和动态效果。本篇文章将通过一个简单的 JavaScript 案例,带你了解网页设计中的一些常见技巧和技术原理。今天就说一说一个常见的图片轮播效果。相信大家在各类电商网站、个人博客或者展示页面中,都看到过这种轮播图。它的核心功能是展示多张图片,并且用户可以通过点击按钮,左右切换图片。

风暴项目个性化推荐系统浅析

风暴项目的主要任务是搭建自媒体平台,作为主开发人员的我希望把工作重心放在个性化推荐系统上。 目前风暴项目的个性化推荐是基于用户行为信息记录实现的,也就是说对于每条资讯,数据库中有字段标明其类型。建立一张用户浏览表,对用户的浏览行为进行记录,从中可以获取当前用户对哪类资讯感兴趣。 若用户第一次登陆,则按默认规则选取热点资讯做推荐,及所有资讯按浏览量降序排序,取前4个。另外,我考虑到后期可能有商业

中国书法——孙溟㠭浅析碑帖《越州石氏帖》

孙溟㠭浅析碑帖《越州石氏帖》 《越州石氏帖》  是一部汇集多本摹刻的帖,南宋时期的会稽石邦哲(字熙明)把家藏的一些法书碑帖集中一起摹刻成的,宋理宗时临安书商陈思《宝刻丛编》有记載这部帖的目录。现在还存有宋代时拓的残缺本,大多是相传的晋朝唐朝的小楷,后人多有临摹学习,并以此版本重新摹刻。 (图片来源于网络) 图文/氿波整理

浅析网页不安装插件播放RTSP/FLV视频的方法

早期很多摄像头视频流使用的是RTSP、RTMP协议,播放这类协议的视频通常是在网页上安装插件。但现在越来越多的用户,对于网页安装插件比较反感,且随着移动设备的普及,用户更多的希望使用手机、平板等移动设备,直接可以查看这些协议的视频。那是否有什么方案可以直接网页打开RTSP、RTMP协议的视频,直接观看不用安装插件呢?而且对于摄像头的数据,尽可能低延迟的获取实时画面。  其实很多摄像头厂家也注意到

浅析c/c++中 struct的区别

(1)C的struct与C++的class的区别。 (2)C++中的struct和class的区别。 在第一种情况下,struct与class有着非常明显的区别。C是一种过程化的语言,struct只是作为一种复杂数据类型定义,struct中只能定义成员变量,不能定义成员函数(在纯粹的C语言中,struct不能定义成员函数,只能定义变量)。例如下面的C代码片断: 复制代码代码如下:

stm32之软件SPI读写W25Q64存储器应用案例

系列文章目录 1. stm32之SPI通信协议 文章目录 系列文章目录前言一、电路接线图二、应用案例代码三、应用案例分析3.1 SPI通信模块3.2 W25Q64模块3.3 主程序 前言 提示:本文主要用作在学习江科大自化协STM32入门教程后做的归纳总结笔记,旨在学习记录,如有侵权请联系作者 本案例使用软件SPI通信的方式实现了STM32与W25Q64 Flas

Flink Exactly-Once 投递实现浅析

本文作者:Paul Lin 文章来源:https://www.whitewood.me 随着近来越来越多的业务迁移到 Flink 上,对 Flink 作业的准确性要求也随之进一步提高,其中最为关键的是如何在不同业务场景下保证 exactly-once 的投递语义。虽然不少实时系统(e.g. 实时计算/消息队列)都宣称支持 exactly-once,exactly-once 投递似乎是一个已被解

Flink1.10基于工厂模式的任务提交与SPI机制

《2021年最新版大数据面试题全面开启更新》 Flink任务执行模式包含了yarn-session、standalone、per-job、local, 在1.10中又增加k8s的执行模式,那么在任务提交过程中如何根据不同的执行模式进行任务提交呢?主要通过两个接口来实现:PipelineExecutorFactory 与 PipelineExecutor。PipelineExecutorF