dijkstra之细节处理 ——PAT (Advanced Level) 1072 Gas Station (30 分)

2023-11-08 12:50

本文主要是介绍dijkstra之细节处理 ——PAT (Advanced Level) 1072 Gas Station (30 分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
题目大意:
有n个居民楼,m个汽油站,给出k条路,要选最合适的汽油站:
1.该汽油站满足到所有居民楼距离不超过ds
2.该汽油站到所有居民楼的最短距离尽可能大
3.在2相同情况下,该汽油站到所有居民楼的平均距离尽可能小
4.在3相同情况下,汽油站标号最小

变量准备:
为了做出dijkstra算法,需要提前设定dis,e,visit等变量,且需设置inf
同时注意设置的max值要大于n + m即1010

更细节的地方需要注意:
e[i][i]设置为0
e[i][j]的路径取最短的

利用singlemin_和avgmin_记录全局的个体最短的最长&平均距离最短的

//大型变量定义现场
int n, m, k, ds;
int e[1100][1100], dis[1100];
bool visit[1100];
int inf = 999999999;
double singlemin_ = -1, avgmin_ = inf;//全局的个体最短的最长&平均距离

输入处理:
输入当作string
将两类点放进1 - n + m, 其中前n个表示居民,后m个表示加油站
1.若无G,则直接stoi读入编号
2.若有G,利用substr(1)表示抓取第一个字符起到结尾的数字,令编号为n + stoi表示gas station

    //初始化准备fill(e[0], e[0] + 1100 * 1100, inf);fill(dis, dis + 1100, inf);for(int i = 0; i < 1100; i++) e[i][i] = 0;//输入处理cin >> n >> m >> k >> ds;string a, b;int c, d, dist;for(int i = 0; i < k; i++){cin >> a >> b >> dist;if(a[0] == 'G'){   a = a.substr(1);c = n + stoi(a);}else c = stoi(a);if(b[0] == 'G'){   b = b.substr(1);d = n + stoi(b);}else d = stoi(b);//cout << c << d << dist << endl;e[c][d] = e[d][c] = min(dist, e[c][d]);}

dijkstra过程:
每个gas来一次dijkstra,首先判断ds,然后记录最短距离和平均距离进行比较,dijkstra过程如下:
1.初始化起点dis为0
2.找出最小的dis记录为u和minn
3.visit为true
4.寻遍v,并更新新的dis[v]

    int nowid = -1;double singlemin, avgmin;//遍历每一个gas stationfor(int index = n + 1; index <= n + m; index++){   //初始化dis和visitfill(dis, dis + 1100, inf);fill(visit, visit + 1100, false);singlemin = inf;avgmin = 0;//dijkstra阶段dis[index] = 0;//index作为起点for(int i = 1; i <= n + m; i++){   int u = -1, minn = inf;//找出目前到index距离最短的for(int j = 1; j <= n + m; j++){if(visit[j] == false && dis[j] < minn){u = j;minn = dis[j];}}if(u == -1) break;visit[u] = true;//更新未选中的点到起点的距离for(int v = 1; v <= n + m; v++){if(visit[v] == false && dis[v] > dis[u] + e[u][v])dis[v] = dis[u] + e[u][v];}}//到目前为止,得到了dis的全部值//考察与每个居民楼的距离for(int i = 1; i <= n; i++){if(dis[i] > ds) //超出服务范围{singlemin = -1;break;}singlemin = min(singlemin, double(dis[i]));//最短距离avgmin += dis[i];//平均距离}if(singlemin == -1) continue;//不合最远服务要求avgmin = avgmin / n;//cout << singlemin << " " << avgmin << endl;if(singlemin > singlemin_){nowid = index;singlemin_ = singlemin;avgmin_ = avgmin;}else if(singlemin == singlemin_ && avgmin < avgmin_){nowid = index;avgmin_ = avgmin;}else if(singlemin == singlemin_ && avgmin == avgmin_)nowid = min(nowid, index);}

完整代码:

#include<bits/stdc++.h>
using namespace std;//大型变量定义现场
int n, m, k, ds;
int e[1100][1100], dis[1100];
bool visit[1100];
int inf = 999999999;
double singlemin_ = -1, avgmin_ = inf;//全局的个体最短&平均距离int main()
{   //初始化准备fill(e[0], e[0] + 1100 * 1100, inf);fill(dis, dis + 1100, inf);for(int i = 0; i < 1100; i++) e[i][i] = 0;//输入处理cin >> n >> m >> k >> ds;string a, b;int c, d, dist;for(int i = 0; i < k; i++){cin >> a >> b >> dist;if(a[0] == 'G'){   a = a.substr(1);c = n + stoi(a);}else c = stoi(a);if(b[0] == 'G'){   b = b.substr(1);d = n + stoi(b);}else d = stoi(b);//cout << c << d << dist << endl;e[c][d] = e[d][c] = min(dist, e[c][d]);}int nowid = -1;double singlemin, avgmin;//遍历每一个gas stationfor(int index = n + 1; index <= n + m; index++){   //初始化dis和visitfill(dis, dis + 1100, inf);fill(visit, visit + 1100, false);singlemin = inf;avgmin = 0;//dijkstra阶段dis[index] = 0;//index作为起点for(int i = 1; i <= n + m; i++){   int u = -1, minn = inf;//找出目前到index距离最短的for(int j = 1; j <= n + m; j++){if(visit[j] == false && dis[j] < minn){u = j;minn = dis[j];}}if(u == -1) break;visit[u] = true;//更新未选中的点到起点的距离for(int v = 1; v <= n + m; v++){if(visit[v] == false && dis[v] > dis[u] + e[u][v])dis[v] = dis[u] + e[u][v];}}//到目前为止,得到了dis的全部值//考察与每个居民楼的距离for(int i = 1; i <= n; i++){if(dis[i] > ds) //超出服务范围{singlemin = -1;break;}singlemin = min(singlemin, double(dis[i]));//最短距离avgmin += dis[i];//平均距离}if(singlemin == -1) continue;//不合最远服务要求avgmin = avgmin / n;//cout << singlemin << " " << avgmin << endl;if(singlemin > singlemin_){nowid = index;singlemin_ = singlemin;avgmin_ = avgmin;}else if(singlemin == singlemin_ && avgmin < avgmin_){nowid = index;avgmin_ = avgmin;}else if(singlemin == singlemin_ && avgmin == avgmin_)nowid = min(nowid, index);}//最终输出if(nowid == -1) printf("No Solution\n");else {printf("G%d\n", nowid - n);printf("%.1lf %.1lf\n", singlemin_, avgmin_ + 0.001);}return 0;
}

总结:
1.利用%.1f,3.25四舍五入是3.2,而3.251是3.3,因此可以加0.00001
2.对于求max初值设-1,对于求min初值设inf
3.名字应该更对应含义
4.substr(1)的用法
5.注意数组的范围,不够的话会导致段错误

这篇关于dijkstra之细节处理 ——PAT (Advanced Level) 1072 Gas Station (30 分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369957

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos