C++进阶篇4---番外-AVL树

2023-11-08 05:20
文章标签 c++ 进阶篇 avl 番外

本文主要是介绍C++进阶篇4---番外-AVL树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii
和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者具有以下性质的二叉搜索树:
  • 它的左右子树都是AVL树
  • 左右子树的高度差(简称平衡因子)的绝对值不超过1(只能是-1/0/1)

【注意】平衡因子是用右子树的高度减去左子树的高度得到的

 

二、AVL树结点的定义

template<class K,class V>
struct AVLTreeNode {AVLTreeNode* _left;AVLTreeNode* _right;AVLTreeNode* _parent;pair<K, V> _kv;int _bf;AVLTreeNode(const pair<K,V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr),_kv(kv),_bf(0){}
};

 三、AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。
AVL树的插入过程可以分为两步:
  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
template<class K,class V>
class AVLTree {typedef AVLTreeNode<K, V> Node;
public:bool insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if(cur->_kv.first>kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);cur->_parent = parent;if (parent->_kv.first > kv.first ){parent->_left = cur;}else{parent->_right = cur;}//看树是否还保持平衡while (parent){//先调整平衡因子---因为插入的结点是叶子节点,所以父结点的平衡因子必然发生变化//在根据平衡因子的计算公式height_r - height_l,判断平衡因子的变化if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}//看是否需要调整以及如何调整//...}}
private:Node* _root = nullptr;
};

上面代码的插入逻辑和二叉搜索树很相似,这里不多讲了(忘记的或者不了解的可以去看二叉搜索树),主要看如何判断树是否平衡以及如何调整使得树保持平衡

这里主要分三种情况:

1、父节点的平衡因子变成0,则树保持平衡,不需要变化

解释:父节点的平衡因子变成0,说明之前未正负1,只有如下两种情况

2、父节点的平衡因子变成正负1,则该子树的高度发生变化,但该子树依旧平衡,要看它的父节点所在的子树是否还能保持平衡

 

3、父结点的平衡因子变成正负2,则该子树的不能保持平衡,需要进行旋转调整

template<class K,class V>
class AVLTree {typedef AVLTreeNode<K, V> Node;
public:bool insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if(cur->_kv.first>kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);cur->_parent = parent;if (parent->_kv.first > kv.first ){parent->_left = cur;}else{parent->_right = cur;}//看树是否还保持平衡while (parent){//先调整平衡因子if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//分4种情况:左单旋,右单旋,先左旋在右旋,先右旋在左旋//...//旋转完成后子树就平衡了=> 整个树都平衡了,直接退出循环break;}else{//如果进入这里,说明前面的代码出错assert(0);}}}
private:Node* _root = nullptr;
};

 四、旋转调整

1、新节点插入较高右子树的右侧---右右:左单旋

代码如下

	void _RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;Node* pParent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (subRL)//注意h==0的情况subRL->_parent = parent;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{subR->_parent = pParent;if (pParent->_left == parent){pParent->_left = subR;}else{pParent->_right = subR;}}subR->_bf = parent->_bf = 0;}

2、 新节点插入较高左子树的左侧---左左:右单旋

注意事项同上。

代码如下 

void _RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;Node* pParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (subLR)//注意h==0的情况subLR->_parent = parent;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{subL->_parent = pParent;if (pParent->_left == parent){pParent->_left = subL;}else{pParent->_right = subL;}}subL->_bf = parent->_bf = 0;}

3、 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

代码如下

	void _RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;//提前记录,防止在旋转时被修改_RotateR(parent->_right);_RotateL(parent);if (bf == 0){parent->_bf = subR->_bf = subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = subRL->_bf = 0;}else{subR->_bf = 1;parent->_bf = subRL->_bf = 0;}}

 4.新节点插入较高左子树的右侧---左右:先左单旋再右单旋

这个留给读者思考 

附:

//完整版代码
template<class K,class V>
struct AVLTreeNode {AVLTreeNode* _left;AVLTreeNode* _right;AVLTreeNode* _parent;pair<K, V> _kv;int _bf;AVLTreeNode(const pair<K,V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr),_kv(kv),_bf(0){}
};template<class K,class V>
class AVLTree {typedef AVLTreeNode<K, V> Node;
public:bool insert(const pair<K,V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);cur->_parent = parent;if (parent->_kv.first > kv.first){parent->_left = cur;}else{parent->_right = cur;}while (parent){if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0)//为0,说明之前_bf=-1/1,即子树的高度没有发生变化{break;}	else if (parent->_bf == 1 || parent->_bf == -1)//为正负1,说明之前_bf=0,即子树的高度发生变化,并且会影响到上层祖宗结点{cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2)//为正负2,树明显不平衡,需要旋转调整{if (parent->_bf == 2 && cur->_bf == 1)//如果该子树的严格右边高,则左单旋{_RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1)//如果该子树的严格左边高,则右单旋{_RotateR(parent);}else if (parent->_bf == -2 && cur->_bf == 1)//左右旋{_RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1)//右旋左旋{_RotateRL(parent);}break;//旋转之后整个树就平衡了,直接跳出循环}else{//这种情况不可能发生,如果发生就说明程序出错assert(false);}}return true;}void _RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;_RotateL(parent->_left);_RotateR(parent);if (bf == 1){subL->_bf = -1;subLR->_bf = parent->_bf = 0;}else if(bf == -1){parent->_bf = 1;subL->_bf = subLR->_bf = 0; }else//bf==0,插入的结点就是subLR{parent->_bf = subL->_bf = subLR->_bf = 0;}}void _RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;_RotateR(parent->_right);_RotateL(parent);if (bf == 1){parent->_bf = -1;subR->_bf = subRL->_bf = 0;}else if(bf == -1){subR->_bf = 1;parent->_bf = subRL->_bf = 0;}else //bf==0,插入的结点就是subLR{parent->_bf = subR->_bf = subRL->_bf = 0;}}//右单旋void _RotateR(Node*parent){Node* subL = parent->_left;//找到要作为新根的结点Node* pParent = parent->_parent;//找到该子树的父亲结点Node* subLR = subL->_right;subL->_right = parent;parent->_parent = subL;parent->_left = subLR;if (subLR)subLR->_parent = parent;if (_root == parent)//如果是根{_root = subL;subL->_parent = nullptr;}else{subL->_parent = pParent;if (pParent->_left == parent){pParent->_left = subL;}else{pParent->_right = subL;}}parent->_bf = subL->_bf = 0;}//左单旋void _RotateL(Node* parent){Node* subR = parent->_right;//找到要作为新根的结点Node* pParent = parent->_parent;//找到该子树的父亲结点Node* subRL = subR->_left;//找到要被"过继"的孩子结点subR->_left = parent;if (subRL)//如有"过继"结点subRL->_parent = parent;parent->_parent = subR;parent->_right = subRL;if (_root == parent)//如果是根{_root = subR;subR->_parent = nullptr;}else{subR->_parent = pParent;if (pParent->_left == parent){pParent->_left = subR;}else{pParent->_right = subR;}}parent->_bf = subR->_bf = 0;}bool Isbalance(){return _Isbalance(_root);//return _Isbalance(_root) >= 0;}bool _Isbalance(Node*root){if (root == nullptr)return true;int left = _Height(root->_left);int right = _Height(root->_right);if (abs(right - left) > 1){cout << root->_kv.first << ":" << root->_kv.second << endl;return false;}if (right - left != root->_bf){cout << root->_kv.first << ":"<< "平衡因子出错" << endl;return false;}return _Isbalance(root->_left) && _Isbalance(root->_right);}size_t size(){return _size(_root);}size_t Height(){return _Height(_root);}private:size_t _Height(Node*root){if (root == nullptr)return 0;return max(_Height(root->_left),_Height(root->_right)) + 1;}size_t _size(Node* root){if (root == nullptr)return 0;return 1 + _size(root->_left) + _size(root->_right);}//如果单纯判断是否平衡可以这么写,-1表示不平衡,>=0表示平衡//int _Isbalance(Node* root)//{//	if (root == nullptr)//		return 0;//	int left = _Isbalance(root->_left);//	if (left < 0) return -1;//	int right = _Isbalance(root->_right);//	if (right < 0) return -1;//	if (abs(right - left) > 1 || right - left != root->_bf)//	{//		return -1;//	}//	return max(left, right) + 1;//}
private:Node* _root = nullptr;
};

这篇关于C++进阶篇4---番外-AVL树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/368037

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取