2013年全国硕士研究生入学统一考试管理类专业学位联考数学试题——纯题目版

本文主要是介绍2013年全国硕士研究生入学统一考试管理类专业学位联考数学试题——纯题目版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2013 级考研管理类联考数学真题

一、问题求解(本大题共 15 小题,每小题 3 分,共 45 分)下列每题给出 5 个选项中,只有一个是符合要求的,请在答题卡上将所选择的字母涂黑。

1.某工厂生产一批零件,计划 10 天完成任务,实际提前 2 天完成任务,则每天的产量比计划平均提高了( ).
A.15%
B. 20%
C. 25%
D.30%
E.35%

2.甲乙两人同时从 A 点出发,沿 400 米跑道同向匀速行走,25 分钟后乙比甲少走了一圈, 若乙行走一圈需要 8 分钟,甲的速度是(单位:米/分钟)( ).
A.62
B.65
C.66
D.67
E.69

3.甲班共有 30 名学生,在一次满分为 100 分的考试中,全班平均成绩为 90 分,则成绩低于 60 分的学生最多有( )人.
A.8
B.7
C.6
D.5
E.4

4.某工程由甲公司承包需要 60 天完成,由甲、乙两公司共同承包需要 28 天完成,由乙、丙两公司共同承包需要 35 天完成,则由丙公司承包完成该工程需要的天数为( )天.
A.85
B.90
C.95
D.100
E.105

5.已知 f ( x ) = 1 ( x + 1 )( x + 2 ) + 1 ( x + 2 )( x + 3 ) + . . . + 1 ( x + 9 )( x + 10 ) f(x)=\frac{{1}}{(x+1)(x+2)}+\frac{{1}}{(x+2)(x+3)}+...+\frac{{1}}{(x+9)(x+10)} f(x)=x+1)(x+21+x+2)(x+31+...+x+9)(x+101,则 f ( 8 ) = () f(8)=() f(8)=()
A. 1 9 \frac{1}{9} 91
B. 1 10 \frac{1}{10} 101
C. 1 16 \frac{1}{16} 161
D. 1 17 \frac{1}{17} 171
E. 1 18 \frac{1}{18} 181

6.甲、乙两商店同时购进了一批某品牌电视机,当甲店售出 15 台时,乙店售出 10 台,此时两店的库存比为 8:7,库存差为 5,则甲、乙两店总进货量为( )台.
A.85
B.90
C.95
D.100
E.125

7.如图所示,在直角三角形 ABC 中, AC = 4, BC = 3, DE / /BC .已知梯形 BCED 的面积为 3, 则 DE 的长为( ).
A. 3 \sqrt{3} 3
B. 3 + 1 \sqrt{3}+1 3 +1
C. 4 3 − 4 4\sqrt{3}-4 43 4
D. 3 2 2 \frac{3\sqrt{2}}{2} 232
E. 3 \sqrt{3} 3
在这里插入图片描述

8.点(0,4) 关于直线 2 x + y + 1 = 0 2x+y+1=0 2x+y+1=0的对称点为( ).
A.(2,0)
B.(-3,0)
C.(-6,1)
D.(4,2)
E.(-4,2)

9.在 ( x 2 + 3 x + 1 ) 5 (x^2+3x+1)^5 (x2+3x+1)5的展开式中, x 2 x^2 x2的系数为( ).
A.5
B.10
C.45
D.90
E.95

10.有一批水果要装箱,一名熟练工单独装箱需要 10 天,每天报酬为 200 元;一名普通工人单独装箱需要 15 天,每天报酬为 120 元,由于场地限制最多同时安排 12 人装箱,若要求在一天内完成装箱任务,则支付的最少报酬为( ).
A.1800 元
B.1840 元
C.1920 元
D.1960 元
E.2000 元

11.将体积为 4 π c m 3 4πcm^3 4πcm3 32 π c m 2 32πcm^2 32πcm2的两个实心金属球熔化后铸成一个实心大球,则大球的表面积为( ).
A. 32 π c m 2 32πcm^2 32πcm2
B. 36 π c m 2 36πcm^2 36πcm2
C. 38 π c m 2 38πcm^2 38πcm2
D. 40 π c m 2 40πcm^2 40πcm2
E. 42 π c m 2 42πcm^2 42πcm2

12.已知抛物线 y = x 2 + b x + c y=x^2+bx+c y=x2+bx+c的对称轴为 x = 1 ,且过点(-1,1) ,则( ).
A. b = -2, c = -2
B. b = 2, c = 2
C. b = -2, c = 2
D. b = -1, c = -1
E. b = 1, c = 1

13.已知{ a n a_n an}为等差数列,若 a 2 a_2 a2 a 10 a_{10} a10是方程 x 2 − 10 x − 9 = 0 x^2-10x-9=0 x210x9=0的两个根,则 a 5 + a 7 = a_5+a_7= a5+a7=( ).
A.-10
B.-9
C.9
D.10
E.12

14.已知 10 件产品中有 4 件一等品,从中任取 2 件,则至少有 1 件一等品的概率为( ).
A. 1 3 \frac{1}{3} 31
B. 2 3 \frac{2}{3} 32
C. 2 15 \frac{2}{15} 152
D. 8 15 \frac{8}{15} 158
E. 13 15 \frac{13}{15} 1513

15.确定两人从 A 地出发经过 B,C,沿逆时针方向行走一圈回到 A 地的方案(见图 2),若从 A 地出发时,每人均可选大路或山道,经过 B,C 时至多有 1 人更改道路,则不同的方案有( )
A.16 种
B.24 种
C.36 种
D.48 种
E.64 种
在这里插入图片描述

二.条件充分性判断:(第 16-25 小题,每小题 3 分,共 30 分)

要求判断每题给出的条件(1)和(2)能否充分支持题干所陈述的结论,A、B、C、D、E 五个选项为判断结果,请选择一项符合试题要求的判断,请在答题卡上将所选的字母涂黑。
(A)条件(1)充分,但条件(2)不充分
(B)条件(2)充分,但条件(1)不充分
(C)条件(1)和(2)都不充分,但联合起来充分
(D)条件(1)充分,条件(2)也充分
(E)条件(1)不充分,条件(2)也不充分,联合起来仍不充分

16.已知平面区域D1={ ( x , y ) ∣ x 2 + y 2 ≤ 9 {(x,y)|x^2+y^2≤9} (x,y)x2+y29},D2={ ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 ≤ 9 {(x,y)|(x-x_0)^2+(y-y_0)^2≤9} (x,y)(xx0)2+(yy0)29},则 D1,D2覆盖区域的边界长度为8π.
(1) x 0 2 + y 0 2 = 9 x_0^2+y_0^2=9 x02+y02=9
(2) x 0 + y 0 = 3 x_0+y_0=3 x0+y0=3

17.p = mq + 1为质数.
(1)m 为正整数, q 为质数
(2)m ,q 均为质数

18.△ABC 的边长分别为a, b, c ,则△ABC 为直角三角形.
(1) ( c 2 − a 2 − b 2 ) ( a 2 − b 2 ) = 0 (c^2-a^2-b^2)(a^2-b^2)=0 (c2a2b2)(a2b2)=0
(2)△ABC 的面积为 1 2 a b \frac{1}{2}ab 21ab

19.已知二次函数 f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c,则方程为 f ( x ) = 0 f(x)=0 f(x)=0有两个不同实根.
(1)a+c=0
(2)a + b + c = 0

20.档案馆在一个库房安装了n 个烟火感应报警器,每个报警器遇到烟火成功报警的概率为p .该库房遇烟火发出报警的概率达到0.999 .
(1) n = 3, p = 0.9
(2) n = 2, p = 0.97

21.已知a,b 为实数,则 ∣ a ∣ ≤ 1 , ∣ b ∣ ≤ 1 |a|≤1,|b|≤1 a1b1.
(1) ∣ a + b ∣ ≤ 1 |a+b|≤1 a+b1
(2) ∣ a − b ∣ ≤ 1 |a-b|≤1 ab1

22.设 x, y, z 为非零实数,则 2 x + 3 y − 4 z − x + y − 2 z = 1 \frac{2x+3y-4z}{-x+y-2z}=1 x+y2z2x+3y4z=1.
(1) 3x - 2 y = 0
(2) 2 y - z = 0

23.某单位年终奖共发了 100 万元奖金,奖金金额分别是一等奖 1.5 万元、二等奖 1 万元、三等奖 0.5 万元,则该单位至少有 100 人.
(1)得二等奖的人数最多
(2)得三等奖的人数最多

24.三个科室的人数分别为 6、3 和 2,因工作需要,每晚需要排 3 人值班,则在两个月中以便每晚值班人员不完全相同.
(1)值班人员不能来自同一科室
(2)值班人员来自三个不同科室

25.设 a 1 = 1 , a 2 = k , . . . , a n + 1 = ∣ a n − a n − 1 ∣ , ( n ≥ 2 ) a_1=1,a_2=k,...,a_{n+1}=|a_n-a_{n-1}|,(n≥2) a1=1,a2=k,...,an+1=anan1,(n2) ,则 a 100 + a 101 + a 102 = 2 a_{100}+a_{101}+a_{102}=2 a100+a101+a102=2.
(1) k = 2
(2)k 是小于 20 的正整数

在这里插入图片描述

这篇关于2013年全国硕士研究生入学统一考试管理类专业学位联考数学试题——纯题目版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361762

相关文章

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

IDEA中的Kafka管理神器详解

《IDEA中的Kafka管理神器详解》这款基于IDEA插件实现的Kafka管理工具,能够在本地IDE环境中直接运行,简化了设置流程,为开发者提供了更加紧密集成、高效且直观的Kafka操作体验... 目录免安装:IDEA中的Kafka管理神器!简介安装必要的插件创建 Kafka 连接第一步:创建连接第二步:选

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

题目1380:lucky number

题目1380:lucky number 时间限制:3 秒 内存限制:3 兆 特殊判题:否 提交:2839 解决:300 题目描述: 每个人有自己的lucky number,小A也一样。不过他的lucky number定义不一样。他认为一个序列中某些数出现的次数为n的话,都是他的lucky number。但是,现在这个序列很大,他无法快速找到所有lucky number。既然