在docker容器中使用cplex-python37

2023-11-06 03:20

本文主要是介绍在docker容器中使用cplex-python37,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技术背景

线性规划是常见的问题求解形式,可以直接跟实际问题进行对接,包括目标函数的建模和各种约束条件的限制等,最后对参数进行各种变更,以找到满足约束条件情况下可以达到的最优解。Cplex是一个由IBM主推的线性规划求解器,可以通过调用cplex的接口,直接对规定形式的线性规划的配置文件.lp文件进行求解。这里我们介绍一下,基于docker来调用cplex的python接口,对线性规划问题进行求解。

基于Docker部署Cplex环境

由于cplex依赖于python3.7版本,而我们本地使用的python版本是python3.8,因此我们考虑使用docker容器来制作一个python37+cplex的容器镜像,用于计算线性规划的问题。关于docker容器的使用,在另外3篇博客(博客1,博客2,博客3)。首先我们在dockerhub上面找一个python37的镜像:


这里我们习惯性的选择星星最高的那个,然后下载到本地:
[dechin-root cplex]# docker pull rackspacedot/python37
Using default tag: latest
latest: Pulling from rackspacedot/python37
Digest: sha256:5ae238bd5d6b06af739ac1b2666111955966d563cb6aea8b366fb446425eb299
Status: Downloaded newer image for rackspacedot/python37:latest
docker.io/rackspacedot/python37:latest

下载完成后,可以在本地的镜像仓库中看到这个新的镜像:

[dechin-root cplex]# docker images
REPOSITORY                                                 TAG       IMAGE ID       CREATED          SIZE
rackspacedot/python37                                      latest    ab7083b6c7c4   3 months ago     1.02GB

下载完成后我们可以进入这个镜像,用pip安装一个最新的cplex。其实cplex的安装还是非常简单的,只是对于python的版本有要求而已。

[dechin-root cplex]# docker run -it rackspacedot/python37 /bin/bash
root@c766ed62d149:/# python3 -m pip install cplex
Collecting cplexDownloading cplex-20.1.0.1-cp37-cp37m-manylinux1_x86_64.whl (30.9 MB)|████████████████████████████████| 30.9 MB 347 kB/s 
Installing collected packages: cplex
Successfully installed cplex-20.1.0.1

安装完成后,我们可以进入python3的命令行界面,测试一下cplex的安装情况:

root@c766ed62d149:/# python3
Python 3.7.9 (default, Nov 18 2020, 14:29:12) 
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cplex
>>> exit()

这里如果没有报错,就表示安装成功了。那么最后,我们需要把刚才对容器镜像的修改永久的保留下来,我们先用ps查看刚才的修改被保存到哪里:

[dechin-root cplex]# docker ps -n 2
CONTAINER ID   IMAGE                   COMMAND       CREATED          STATUS                     PORTS     NAMES
c766ed62d149   rackspacedot/python37   "/bin/bash"   2 minutes ago    Exited (0) 6 seconds ago             xenodochial_ardinghelli
af037db88540   cplex                   "/bin/bash"   48 minutes ago   Up 48 minutes                        magical_cori

在过去的2条记录中我们发现对容器镜像的修改被保存到c766开头的容器中,这时我们可以直接对这个编号的容器进行提交保存:

[dechin-root cplex]# docker commit c766 cplex-py37
sha256:34e2729697010b1320c2f7dbfd1fc45004e9ffae6a1d26ffb8748b5627cb2224

如果出现以上的反馈,就表示我们成功的把刚才下载cplex的这一修改永久的保存进cplex-py37这个新容器中,这样就可以在本地的容器仓库里面看到这个新的容器:

[dechin-root cplex]# docker images
REPOSITORY                                                 TAG       IMAGE ID       CREATED              SIZE
cplex-py37                                                 latest    34e272969701   About a minute ago   1.15GB

到这里,我们使用docker部署的cplex求解器的环境就已经完成了,下一步我们用真实的线性规划的问题来进行测试。

线性规划问题求解

上面的章节主要是为了展示基于docker的cplex环境部署,用同样的方法我们此前已经制作好了一个名为cplex的容器镜像,这里我们直接用来测试。容器的拉起方法,要绑定本地存放有线性规划问题定义的文件所在的目录:

[dechin-root cplex]# docker run -it -v /home/dechin/projects/2021-quantum/cplex/:/home/ cplex /bin/bash

线性规划问题定义

Cplex可以识别lp格式的文件,这里我们展示一个测试用例来说明这个线性规划的问题是如何定义的:

[dechin-root cplex]# cat test.lp 
Maximizeobj: 2 x1 + 3 x2 + 4 x3
Subject Toc1: 3 x1 + 4 x2 + 5 x3 <= 8
Bounds0 <= x1 <= 10 <= x2 <= 10 <= x3 <= 1
Binaryx1 x2 x3
End

在这个问题中,我们的目标是优化这样的一个函数:

\[max\{2x_1+3x_2+4x_3\} \]

就是找这么一个函数的最大值,这些参数\(x_1,x_2,x_3\)都是二元变量,即\(x\in\{0,1\}\),而且需要满足给定的约束条件:

\[3x_1+4x_2+5x_3\leq8 \]

问题解析与代码求解

其实这是一个典型的单背包问题的案例:给定一个承重量为8的背包,需要装3个物品\(\{x_1,x_2,x_3\}\)中的某几个拿去卖。这三个物品的重量分别是\(\{3,4,5\}\),因此我们没办法将所有的物品一次性装到包里面,因为这会超过背包的承重量。而这3个物品的收益分别是\(\{2,3,4\}\),对于这个问题来说,就是要最大化这个收益。比如说,我们只装\(x_1,x_2\)两个物品,也就是\(x_1=1,x_2=1,x_3=0\),那么总重量是7,并没有超过背包的承重量,而总的收益是5。这是一组可行解,但不一定是最优解,接下来我们看看cplex是否有可能找到这个问题的最优解。

root@af037db88540:/home# python3
Python 3.7.9 (default, Nov 18 2020, 14:29:12) 
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cplex
>>> lp = cplex.Cplex() # 初始化对象
>>> lp.read('test.lp') # 读取线性规划文件
>>> lp.solve() # 求解
Version identifier: 12.10.0.0 | 2019-11-27 | 843d4de
CPXPARAM_Read_DataCheck                          1
Found incumbent of value 0.000000 after 0.00 sec. (0.00 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 1 rows and 3 columns.
MIP Presolve modified 3 coefficients.
All rows and columns eliminated.
Presolve time = 0.00 sec. (0.00 ticks)Root node processing (before b&c):Real time             =    0.00 sec. (0.00 ticks)
Parallel b&c, 8 threads:Real time             =    0.00 sec. (0.00 ticks)Sync time (average)   =    0.00 sec.Wait time (average)   =    0.00 sec.------------
Total (root+branch&cut) =    0.00 sec. (0.00 ticks)
>>> lp.solution.get_objective_value() # 获取求解的目标函数值
6.0
>>> lp.solution.get_values() # 获取最终的参数值
[1.0, 0.0, 1.0]

这个示例中我们将每一步的含义都直接注释在代码中,我们直接调用cplex的接口,写好lp文件,就可以很轻松的进行求解了。得到的最终的解是\(\{1,0,1\}\),也就是总重量为8,未超过承重量,而总收益为6,高于我们刚才手工找到的可行解的收益值。同时这也是这个问题的唯一最优解,这一点其实我们可以手工验证。

总结概要

在这篇文章中我们介绍了如何使用docker去搭建一个cplex线性规划求解器的编程环境,制作完docker容器,我们也展示了如何写一个线性规划问题定义的文件,并使用cplex对给定一个背包问题的线性规划(实际上是一个二元规划问题)文件进行求解。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/cplex.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/

参考链接

  1. https://blog.csdn.net/qq_33670304/article/details/102882863

这篇关于在docker容器中使用cplex-python37的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354178

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H