【Atlas200】华为AIPP配置文件使用

2023-11-05 16:50

本文主要是介绍【Atlas200】华为AIPP配置文件使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • AIPP介绍
  • 图像处理顺序
  • 例子:YUV420SP_U8转BGR格式
  • 归一化配置对应公式
  • crop及padding功能
  • 配置生效
  • AIPP转换模板

AIPP介绍

华为的AIPP(AI Preprocessing)是一种面向AI应用的图像预处理技术,旨在提高AI应用的效率和精度。AIPP支持多种图像格式,包括RGB、YUV、BGR等,并提供了丰富的预处理选项,如色彩空间转换、缩放、裁剪、旋转、镜像、去噪、锐化等。AIPP还支持多张图片的批处理,可同时处理多张图片,提高处理效率。AIPP的工作流程主要包括三个阶段:预处理配置、数据传输和AIPP处理。预处理配置阶段用于设置AIPP的参数和配置选项,数据传输阶段将原始图像数据传输到AIPP模块,AIPP处理阶段对图像数据进行预处理操作。AIPP技术可以帮助开发者快速高效地完成图像预处理工作,减少代码量,提高代码的可读性和可维护性,同时也能提高AI应用的效率和精度。
与DVPP不同的是,AIPP主要用于在AI Core上完成数据预处理,DVPP是昇腾AI处理器内置的图像处理单元,通过AscendCL媒体数据处理接口提供强大的媒体处理硬加速能力。

图像处理顺序

配置文件中的参数有如下处理顺序要求:通道交换(rbuv_swap_switch)>图像裁剪(crop )> 色域转换(通道交换) > 数据减均值/归一化 > 图像边缘填充(padding)。

例子:YUV420SP_U8转BGR格式

该场景以AIPP输入YUV420SP_U8(NV12)图像格式,输出BGR格式为例进行说明,输入图像尺寸为256*256;原始网络模型Caffe/TF的C=3,H和W与AIPP输入图像尺寸相同,该场景下无需配置抠图功能参数crop,但需要配置色域转换开关csc_switch和相应的CSC矩阵参数。

aipp_op {aipp_mode: static   #AIPP配置模式input_format: YUV420SP_U8  #输入给AIPP的原始图片格式csc_switch: true #色域转换开关,true表示开启色域转换# 如果输入的是YVU420SP_U8(NV21)图像,则需要将rbuv_swap_switch参数设置为truerbuv_swap_switch: false ##通道交换开关(R通道与B通道交换开关/U通道与V通道交换),本例中不涉及两个通道的交换,故设置为false,默认为falserelated_input_rank: 0src_image_size_w: 256 #输入给AIPP的原始图片宽高src_image_size_h: 256crop: false #抠图功能关matrix_r0c0: 298 #色域转换系数,用户无需修改matrix_r0c1: 516matrix_r0c2: 0matrix_r1c0: 298matrix_r1c1: -100matrix_r1c2: -208matrix_r2c0: 298matrix_r2c1: 0matrix_r2c2: 409input_bias_0: 16input_bias_1: 128input_bias_2: 128# 归一化系数需要根据用户模型实际需求配置,如下所取常见值仅作为示例# 归一化系数应用于色域转换和通道交换之后的通道mean_chn_0: 104mean_chn_1: 117mean_chn_2: 123min_chn_0: 0.0min_chn_1: 0.0min_chn_2: 0.0var_reci_chn_0: 1.0var_reci_chn_1: 1.0var_reci_chn_2: 1.0
}

归一化配置对应公式

pixel_out_chx(i)=[pixel_in_chx(i)-mean_chn_i-min_chn_i]*var_reci_chn

crop及padding功能

经过图像尺寸改变之后最终图片大小,需要跟模型文件输入的图像大小即–input_shape中的宽和高相等。
对于YUV420SP_U8图片类型,load_start_pos_w、load_start_pos_h参数必须配置为偶数。配置样例如下:
在这里插入图片描述
相关代码:

aipp_op {aipp_mode: staticinput_format: YUV420SP_U8src_image_size_w: 320  src_image_size_h: 240crop: trueload_start_pos_w: 10load_start_pos_h: 20crop_size_w: 50crop_size_h: 60padding: trueleft_padding_size: 20right_padding_size: 15top_padding_size: 20bottom_padding_size: 15padding_value: 0}

配置生效

在转换模型时使用:–insert_op_conf=$HOME/module/insert_op.cfg 使得AIPP最终生效。

atc --model=$HOME/module/resnet50.prototxt --weight=$HOME/module/resnet50.caffemodel --framework=0 --insert_op_conf=$HOME/module/insert_op.cfg  --output=$HOME/module/out/caffe_resnet50 --soc_version=<soc_version>

Crop/Padding配置说明

AIPP转换模板

AIPP的配置以aipp_op开始,标识这是一个AIPP算子的配置,aipp_op支持配置多个

aipp_op {
#========================= 全局设置(start) ====================================
# aipp_mode指定了AIPP的模式,必须配置
# 类型:enum
# 取值范围:dynamic/static,dynamic 表示动态AIPP,static 表示静态AIPP
aipp_mode:  # related_input_rank参数为可选,标识对模型的第几个输入做AIPP处理,从0开始,默认为0。例如模型有两个输入,需要对第2个输入做AIPP,则配置related_input_rank为1
# 类型: 整型
# 配置范围 >= 0
related_input_rank: 0# related_input_name参数为可选,标识对模型的第几个输入做AIPP处理,此处需要填写为模型输入的name(input对应的值)或者模型首层节点的输出(top参数对应的取值)。该参数只适用于Caffe网络模型,且不能与related_input_rank参数同时使用。
# 例如模型有两个输入,且输入name分别为data、im_info,需要对第二个输入做AIPP,则配置related_input_name为im_info。
# 类型:string
# 配置范围:无
related_input_name: ""#========================= 全局设置(end) =======================================================================================================================
#========================= 动态AIPP需设置,静态AIPP无需设置(start) ======================================================================================================================
# 输入图像最大的size,动态AIPP必须配置(如果为动态batch场景,N为最大档位数的取值)
# 类型:int
max_src_image_size: 0
# 若输入图像格式为YUV400_U8,则max_src_image_size>=N * src_image_size_w * src_image_size_h * 1。
# 若输入图像格式为YUV420SP_U8,则max_src_image_size>=N * src_image_size_w * src_image_size_h * 1.5。
# 若输入图像格式为XRGB8888_U8,则max_src_image_size>=N * src_image_size_w * src_image_size_h * 4。
# 若输入图像格式为RGB888_U8,则max_src_image_size>=N * src_image_size_w * src_image_size_h * 3。# 是否支持旋转,保留字段,暂不支持该功能
# 类型:bool
# 取值范围:true/falsetrue表示支持旋转,false表示不支持旋转
support_rotation: false
#========================= 动态AIPP需设置,静态AIPP无需设置(end) =======================================================================================================================================#========================= 静态AIPP需设置,动态AIPP无需设置 (start)======================================================================================================================================
# 输入图像格式,必选
# 类型: enum
# 取值范围:YUV420SP_U8、XRGB8888_U8、RGB888_U8、YUV400_U8
input_format: 
# 说明:模型转换完毕后,在对应的*.om模型文件中,上述参数分别以1234枚举值呈现。# 原始图像的宽度、高度
# 类型:int32
# 取值范围 & 约束:宽度取值范围为[2,4096]0;高度取值范围为[1,4096]0,对于YUV420SP_U8类型的图像,要求原始图像的宽和高取值是偶数
src_image_size_w: 0
src_image_size_h: 0
# 说明:请根据实际图片的宽、高配置src_image_size_w和src_image_size_h;只有crop,padding功能都没有开启的场景,src_image_size_w和src_image_size_h才能取值为0或不配置,该场景下会取网络模型输入定义的w和h,并且网络模型输入定义的w取值范围为[2,4096],h取值范围为[1,4096]# C方向的填充值,保留字段,暂不支持该功能
# 类型: float16
# 取值范围:[-65504, 65504]
cpadding_value: 0.0#========= crop参数设置(配置样例请参见AIPP配置 > Crop/Padding配置说明) =========
# AIPP处理图片时是否支持抠图
# 类型:bool
# 取值范围:true/falsetrue表示支持,false表示不支持
crop: false# 抠图起始位置水平、垂直方向坐标,抠图大小为网络输入定义的w和h
# 类型:int32
# 取值范围 & 约束: [0,4095]、对于YUV420SP_U8类型的图像,要求取值是偶数
# 说明:load_start_pos_w<src_image_size_w,load_start_pos_h<src_image_size_h
load_start_pos_w: 0
load_start_pos_h: 0# 抠图后的图像size
# 类型:int32
# 取值范围 & 约束: [0,4096]、load_start_pos_w + crop_size_w <= src_image_size_w、load_start_pos_h + crop_size_h <= src_image_size_h
crop_size_w: 0
crop_size_h: 0
说明:若开启抠图功能,并且没有配置padding,该场景下crop_size_w和crop_size_h才能取值为0或不配置,此时抠图大小(crop_size[W|H])的宽和高取值来自模型文件--input_shape中的宽和高,并且--input_shape中的宽和高取值范围为[1,4096]。# 抠图约束如下:
# 若input_format取值为YUV420SP_U8,则load_start_pos_w、load_start_pos_h必须为偶数。
# 若input_format取值为其他值,对load_start_pos_w、load_start_pos_h无约束。
# 若开启抠图功能,则src_image_size[W|H] >= crop_size[W|H]+load_start_pos[W|H]。#================================== resize参数设置 ================================
# AIPP处理图片时是否支持缩放,保留字段,暂不支持该功能
# 类型:bool
# 取值范围:true/falsetrue表示支持,false表示不支持
resize: false# 缩放后图像的宽度和高度,保留字段,暂不支持该功能
# 类型:int32
# 取值范围 & 约束:resize_output_h:[16,4096]0;resize_output_w:[16,1920]0;resize_output_w/resize_input_w∈[1/16,16]、resize_output_h/resize_input_h∈[1/16,16]
resize_output_w: 0
resize_output_h: 0
# 说明:若开启了缩放功能,并且没有配置padding,该场景下resize_output_w和resize_output_h才能取值为0或不配置,此时缩放后图像的宽和高取值来自模型文件--input_shape中的宽和高,并且--input_shape中的高取值范围为[16,4096],宽取值范围为[16,1920]。#======== padding参数设置(配置样例请参见AIPP配置 > Crop/Padding配置说明) =========
# AIPP处理图片时padding使能开关
# 类型:bool
# 取值范围:true/falsetrue表示支持,false表示不支持
padding: false# H和W的填充值,静态AIPP配置
# 类型: int32
# 取值范围:[0,32]
left_padding_size: 0
right_padding_size: 0
top_padding_size: 0
bottom_padding_size: 0
# 说明:AIPP经过padding后,输出的H和W要与模型需要的H和W保持一致,其中W取值要<=1080。# 上下左右方向上padding的像素取值,静态AIPP配置
# 类型:uint8/int8/float16
# 取值范围分别为:[0,255][-128, 127][-65504, 65504]
padding_value: 0
# 说明:该参数取值需要与最终AIPP输出图片的数据类型保持一致。#================================ rotation参数设置 ==================================
# AIPP处理图片时的旋转角度,保留字段,暂不支持该功能
# 类型:uint8
# 范围:{0, 1, 2, 3} 0不旋转,1顺时针90°,2顺时针180°,3顺时针270°
rotation_angle: 0#========= 色域转换参数设置(配置样例请参见AIPP配置 > 色域转换配置说明) =============
# 色域转换开关,静态AIPP配置
# 类型:bool
# 取值范围:true/falsetrue表示开启色域转换,false表示关闭
csc_switch: false# R通道与B通道交换开关/U通道与V通道交换开关
# 类型:bool
# 取值范围:true/falsetrue表示开启通道交换,false表示关闭
rbuv_swap_switch :false# RGBA->ARGB, YUVA->AYUV交换开关
# 类型:bool
# 取值范围:true/falsetrue表示开启,false表示关闭
ax_swap_switch: false# 单行处理模式(只处理抠图后的第一行)开关,保留字段,暂不支持该功能
# 类型:bool
# 取值范围:true/falsetrue表示开启单行处理模式,false表示关闭
single_line_mode: false# 若色域转换开关为false,则本功能不起作用。
# 若输入图片通道数为4,则忽略A通道或X通道。
# YUV转BGR:
# | B |   | matrix_r0c0 matrix_r0c1 matrix_r0c2 | | Y - input_bias_0 |
# | G | = | matrix_r1c0 matrix_r1c1 matrix_r1c2 | | U - input_bias_1 | >> 8
# | R |   | matrix_r2c0 matrix_r2c1 matrix_r2c2 | | V - input_bias_2 |
# BGR转YUV:
# | Y |   | matrix_r0c0 matrix_r0c1 matrix_r0c2 | | B |        | output_bias_0 |
# | U | = | matrix_r1c0 matrix_r1c1 matrix_r1c2 | | G | >> 8 + | output_bias_1 |
# | V |   | matrix_r2c0 matrix_r2c1 matrix_r2c2 | | R |        | output_bias_2 |# 3*3 CSC矩阵元素
# 类型:int16
# 取值范围:[-32677 ,32676] 
matrix_r0c0: 298
matrix_r0c1: 516
matrix_r0c2: 0
matrix_r1c0: 298
matrix_r1c1: -100
matrix_r1c2: -208
matrix_r2c0: 298
matrix_r2c1: 0
matrix_r2c2: 409# RGB转YUV时的输出偏移
# 类型:uint8
# 取值范围:[0, 255]
output_bias_0: 16
output_bias_1: 128
output_bias_2: 128# YUV转RGB时的输入偏移
# 类型:uint8
# 取值范围:[0, 255]
input_bias_0: 16
input_bias_1: 128
input_bias_2: 128#============================== 减均值、乘系数设置 =================================
# 计算规则如下:
# 当uint8->uint8时,本功能不起作用
# 当uint8->fp16时,pixel_out_chx(i) = [pixel_in_chx(i) – mean_chn_i – min_chn_i] * var_reci_chn# 每个通道的均值
# 类型:uint8
# 取值范围:[0, 255]
mean_chn_0: 0
mean_chn_1: 0
mean_chn_2: 0
mean_chn_3: 0# 每个通道的最小值
# 类型:float16
# 取值范围:[0, 255]
min_chn_0: 0.0
min_chn_1: 0.0
min_chn_2: 0.0
min_chn_3: 0.0# 每个通道方差的倒数
# 类型:float16
# 取值范围:[-65504, 65504]
var_reci_chn_0: 1.0
var_reci_chn_1: 1.0
var_reci_chn_2: 1.0
var_reci_chn_3: 1.0
}#========================= 静态AIPP需设置,动态AIPP无需设置 (end)=====================================================================================================================================

这篇关于【Atlas200】华为AIPP配置文件使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/351200

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存