variant (C++ 模板元编程)

2023-11-05 03:36
文章标签 模板 c++ 编程 variant

本文主要是介绍variant (C++ 模板元编程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

std::variant

可以理解为一个会自动清除空间的union,保证了赋值时内存的正确性,能够自动进行析构。

通过get可传入下标或者type来获取值,但是不安全,如果传入类型于当前类型不一致时会引发错误。

可以通过get_if传入下标或者值和variant指针来安全获得值。

有类模板variant_alternative来获取第几个属性的type,以及类模板variant_size来获取variant中存放了多少个属性。

  • variant
  • get< type >
  • get< N >
  • variant_alternative
  • variant_size
  • operator =
int main() {std::variant<int, float> a;a = 1;auto int_value = std::get<int>(a);std::cout << int_value << "\n";try {auto float_value = std::get<float>(a);} catch (const std::bad_variant_access &e) {std::cout << e.what() << "\n";}std::cout << std::holds_alternative<int>(a) << " "<< std::holds_alternative<float>(a) << "\n";a = 1.1f;std::cout << std::holds_alternative<int>(a) << " "<< std::holds_alternative<float>(a) << "\n";std::cout << std::get<float>(a) << " " << std::get<1>(a) << "\n";// std::cout << std::get<int>(a) << " " << std::get<0>(a) << "\n";std::cout << std::get_if<0>(&a) << " " << std::get_if<int>(&a) << "\n";std::cout << std::get_if<1>(&a) << " " << std::get_if<float>(&a) << "\n";std::variant_alternative<1, decltype(a)>::type f = 1.2;std::cout << f << "\n";std::cout << std::variant_size_v<decltype(a)> << "\n";return 0;
}

sample::variant

存储结构

union模板一层一层嵌套,即可得到我们的variant存储结构,整体的内存占用情况为sizeof(largestType<Ts...>)

template<typename ...Ts> union __union;template<typename T, typename ...Ts>
union __union<T, Ts...> {using type = __union;using rest_type = __union<Ts...>;using value_type = T;T value_;rest_type rest_;template<typename Tv>requires std::is_same_v<std::decay_t<Tv>, T>__union(Tv&& value) : value_(std::forward<Tv>(value)) {}template <typename Tv>__union(Tv&& rest) : rest_(std::forward<Tv>(rest)) {}__union() {}~ __union() {}
};template<typename T>
union __union<T> {using type = __union;using value_type = T;T value_;template<typename Tv>requires std::is_same_v<std::decay_t<Tv>, T>__union(Tv&& value) : value_(std::forward<Tv>(value)) {}__union() {}~ __union() {}
};

简单测试访问一下看看:

int a = 114;
auto u1 = __union<short int, int, unsigned int, long long, float, double>(a);
std::cout << u1.value_ << " " << u1.rest_.value_ << " " << u1.rest_.rest_.value_ << " "<< u1.rest_.rest_.rest_.value_ << " " << u1.rest_.rest_.rest_.rest_.value_ << " "<< u1.rest_.rest_.rest_.rest_.rest_.value_ << "\n";const double b = 115.514;
auto u2 = __union<short int, int, unsigned int, long long, float, double>(b);
std::cout << u2.value_ << " " << u2.rest_.value_ << " " << u2.rest_.rest_.value_ << " "<< u2.rest_.rest_.rest_.value_ << " " << u2.rest_.rest_.rest_.rest_.value_ << " "<< u2.rest_.rest_.rest_.rest_.rest_.value_ << "\n";std::string str = "lifehappy";
auto u3 = __union<int, double, std::string>(std::move(str));
std::cout << u3.value_ << " " << u3.rest_.value_ << " " << u3.rest_.rest_.value_ << " : __union\n";
std::cout << str << " : str\n";

114 114 114 4294967410 1.59748e-43 2.122e-314
-30409 1614907703 1614907703 4637828992051808567 5.5783e+19 115.514
1701210476 4.06896e+233 lifehappy : __union
: str

variant

template<typename ...Ts>
struct variant {using type = variant;using data_type = __union<Ts...>;__union<Ts...> data_;template<typename Tv>variant(Tv&& data) : data_(std::forward<Tv>(data)) {}variant() {}~ variant() {}
};

variant_alternative

template<int N, typename ...Ts> struct variant_alternative {};template<int N, typename ...Ts>
struct variant_alternative<N, variant<Ts...>>: variant_alternative<N, typename variant<Ts...>::data_type> {};template<int N, typename ...Ts>
struct variant_alternative<N, __union<Ts...>>: variant_alternative<N - 1, typename __union<Ts...>::rest_type> {};template<typename ...Ts>
struct variant_alternative<0, __union<Ts...>> {using type = __union<Ts...>::value_type;
};template<int N, typename ...Ts>
using variant_alternative_t = variant_alternative<N, Ts...>::type;

variant_size

template<typename ...Ts> struct variant_size {};template<typename ...Ts>
struct variant_size<variant<Ts...>>: std::integral_constant<int, sizeof...(Ts)> {};template<typename ...Ts>
constexpr static int variant_size_v = variant_size<Ts...>::value;

get< type > 、get< N >

这里的实现并不会像std::variant一样,即可以把我们的实现认为就是一个union

get< N >

template<int N, typename T>
struct get_impl {static auto&& get(T &data) {return get_impl<N - 1, typename T::rest_type>::get(data.rest_);}
};template<typename T>
struct get_impl<0, T> {static T::value_type& get(T &data) {return data.value_;}
};template<int N, typename T>
static auto&& get(T &var) {return get_impl<N, typename T::data_type>::get(var.data_);
}

get< type >

template<typename T, typename Tv>
struct get_type_impl {static auto&& get(Tv &data) {return get_type_impl<T, typename Tv::rest_type>::get(data.rest_);}
};template<typename Tv>
struct get_type_impl<typename Tv::value_type, Tv> {static Tv::value_type& get(Tv &data) {return data.value_;}
};template<typename T, typename Tv>
static auto&& get(Tv &var) {return get_type_impl<T, typename Tv::data_type>::get(var.data_);
}

operator =

这里也是variant最重要的功能了,能够在赋值的时候自动析构原来保存的值。

先看不加析构函数的版本:

template<typename Tv>
variant& operator = (Tv&& data) {new (&data_) data_type(std::forward<Tv>(data));return *this;
}

TEST

struct Test {~ Test() {std::cout << "~ Test()\n";}
};Test a, b;
variant<int, long long, Test> variant_test(a);
std::cout << "OK\n";
variant_test = b;
std::cout << "OK\n";

OK
OK
~ Test()
~ Test()

只有最后a、b的两次析构,缺少了赋值时和销毁variant时的析构调用。

要能够析构,那么势必我们需要保存当前的type,为了方便,这里直接使用一个int变量来保存type所对应的下标,

同时实现一个类模板,获取当前值在列表中的位置。

template<typename Tu, typename T> struct type_index_impl: std::integral_constant<int, type_index_impl<typename Tu::rest_type, T>::value + 1> {};template<typename Tu>
struct type_index_impl<Tu, typename Tu::value_type>: std::integral_constant<int, 0> {};template<typename Tu, typename T>
constexpr static int type_index = type_index_impl<Tu, T>::value;

得到所有类型的析构函数,由于variant的类型是动态加载的,考虑将所有类型的destructor存下来,按需调用:

std::function<void(void *)> destructors[sizeof...(Ts)] ={ [](void *ptr) { static_cast<Ts*>(ptr)->~Ts(); }... };

接着稍微修改一下operator =、~variant()

template<typename Tv>
variant& operator = (Tv&& data) {if (~type_) {destructors[type_](&data_);}new (&data_) data_type(std::forward<Tv>(data));type_ = type_index<data_type, std::decay_t<Tv>>;return *this;
}~ variant() {if (~type_) {destructors[type_](&data_);}
}

TEST

struct Test1 {~ Test1() {std::cout << "~ Test1()\n";}
}a;struct Test2 {~ Test2() {std::cout << "~ Test2()\n";}
}b;variant<int, long long, Test1, Test2> variant_test(a);
std::cout << "OK\n";
variant_test = b;
std::cout << "OK\n";
OK
Test1()
OK
Test2()
Test2()
Test1()

Code

#include <iostream>
#include <string>
#include <type_traits>
#include <functional>template<typename ...Ts> union __union;template<typename T, typename ...Ts>
union __union<T, Ts...> {using type = __union;using rest_type = __union<Ts...>;using value_type = T;T value_;rest_type rest_;template<typename Tv>requires std::is_same_v<std::decay_t<Tv>, T>__union(Tv&& value) : value_(std::forward<Tv>(value)) {}template <typename Tv>__union(Tv&& rest) : rest_(std::forward<Tv>(rest)) {}__union() {}~ __union() {}
};template<typename T>
union __union<T> {using type = __union;using value_type = T;T value_;template<typename Tv>requires std::is_same_v<std::decay_t<Tv>, T>__union(Tv&& value) : value_(std::forward<Tv>(value)) {}__union() {}~ __union() {}
};template<typename Tu, typename T> struct type_index_impl: std::integral_constant<int, type_index_impl<typename Tu::rest_type, T>::value + 1> {};template<typename Tu>
struct type_index_impl<Tu, typename Tu::value_type>: std::integral_constant<int, 0> {};template<typename Tu, typename T>
constexpr static int type_index = type_index_impl<Tu, T>::value;template<typename ...Ts>
struct variant {using type = variant;using data_type = __union<Ts...>;__union<Ts...> data_;int type_{-1};std::function<void(void *)> destructors[sizeof...(Ts)] ={ [](void *ptr) { static_cast<Ts*>(ptr)->~Ts(); }... };template<typename Tv>variant(Tv&& data) : data_(std::forward<Tv>(data)),type_(type_index<data_type, std::decay_t<Tv>>) {}template<typename Tv>variant& operator = (Tv&& data) {if (~type_) {destructors[type_](&data_);}new (&data_) data_type(std::forward<Tv>(data));type_ = type_index<data_type, std::decay_t<Tv>>;return *this;}variant() {}~ variant() {if (~type_) {destructors[type_](&data_);}}
};template<int N, typename ...Ts> struct variant_alternative {};template<int N, typename ...Ts>
struct variant_alternative<N, variant<Ts...>>: variant_alternative<N, typename variant<Ts...>::data_type> {};template<int N, typename ...Ts>
struct variant_alternative<N, __union<Ts...>>: variant_alternative<N - 1, typename __union<Ts...>::rest_type> {};template<typename ...Ts>
struct variant_alternative<0, __union<Ts...>> {using type = __union<Ts...>::value_type;
};template<int N, typename ...Ts>
using variant_alternative_t = variant_alternative<N, Ts...>::type;template<typename ...Ts> struct variant_size {};template<typename ...Ts>
struct variant_size<variant<Ts...>>: std::integral_constant<int, sizeof...(Ts)> {};template<typename ...Ts>
constexpr static int variant_size_v = variant_size<Ts...>::value;template<int N, typename T>
struct get_n_impl {static auto&& get(T &data) {return get_n_impl<N - 1, typename T::rest_type>::get(data.rest_);}
};template<typename T>
struct get_n_impl<0, T> {static T::value_type& get(T &data) {return data.value_;}
};template<int N, typename T>
static auto&& get(T &var) {return get_n_impl<N, typename T::data_type>::get(var.data_);
}template<typename T, typename Tv>
struct get_type_impl {static auto&& get(Tv &data) {return get_type_impl<T, typename Tv::rest_type>::get(data.rest_);}
};template<typename Tv>
struct get_type_impl<typename Tv::value_type, Tv> {static Tv::value_type& get(Tv &data) {return data.value_;}
};template<typename T, typename Tv>
static auto&& get(Tv &var) {return get_type_impl<T, typename Tv::data_type>::get(var.data_);
}int main() {int a = 114;auto u1 = __union<short int, int, unsigned int, long long, float, double>(a);std::cout << u1.value_ << " " << u1.rest_.value_ << " " << u1.rest_.rest_.value_ << " "<< u1.rest_.rest_.rest_.value_ << " " << u1.rest_.rest_.rest_.rest_.value_ << " "<< u1.rest_.rest_.rest_.rest_.rest_.value_ << "\n";const double b = 115.514;auto u2 = __union<short int, int, unsigned int, long long, float, double>(b);std::cout << u2.value_ << " " << u2.rest_.value_ << " " << u2.rest_.rest_.value_ << " "<< u2.rest_.rest_.rest_.value_ << " " << u2.rest_.rest_.rest_.rest_.value_ << " "<< u2.rest_.rest_.rest_.rest_.rest_.value_ << "\n";std::string str1 = "lifehappy";auto u3 = __union<int, double, std::string>(std::move(str1));std::cout << u3.value_ << " " << u3.rest_.value_ << " " << u3.rest_.rest_.value_ << " : __union\n";std::cout << str1 << " : str\n";auto v3 = variant<int, double, std::string>();std::cout << std::is_same_v<int, variant_alternative_t<0, decltype(v3)>> << " "<< std::is_same_v<double, variant_alternative_t<1, decltype(v3)>> << " "<< std::is_same_v<std::string, variant_alternative_t<2, decltype(v3)>> << "\n";std::cout << std::is_same_v<int, variant_alternative_t<0, decltype(u3)>> << " "<< std::is_same_v<double, variant_alternative_t<1, decltype(u3)>> << " "<< std::is_same_v<std::string, variant_alternative_t<2, decltype(u3)>> << "\n";std::cout << std::is_same_v<variant_alternative_t<0, decltype(v3)>, variant_alternative<0, decltype(v3)>::type> << " "<< std::is_same_v<variant_alternative_t<1, decltype(v3)>, variant_alternative<1, decltype(v3)>::type> << " "<< std::is_same_v<variant_alternative_t<2, decltype(v3)>, variant_alternative<2, decltype(v3)>::type> << "\n";std::cout << std::is_same_v<variant_alternative_t<0, decltype(u3)>, variant_alternative<0, decltype(u3)>::type> << " "<< std::is_same_v<variant_alternative_t<1, decltype(u3)>, variant_alternative<1, decltype(u3)>::type> << " "<< std::is_same_v<variant_alternative_t<2, decltype(u3)>, variant_alternative<2, decltype(u3)>::type> << "\n";std::cout << variant_size<decltype(v3)>::value << " " << variant_size_v<decltype(v3)> << "\n";variant<int, unsigned int, long long, double, std::string> v4((int)114514);std::cout << get_n_impl<0, decltype(v4.data_)>::get(v4.data_) << " " << get_n_impl<1, decltype(v4.data_)>::get(v4.data_) << " "<< get_n_impl<2, decltype(v4.data_)>::get(v4.data_) << " " << get_n_impl<3, decltype(v4.data_)>::get(v4.data_) << " "<< get_n_impl<4, decltype(v4.data_)>::get(v4.data_) << "\n";std::cout << get<0>(v4) << " " << get<1>(v4) << " " << get<2>(v4) << " " << get<3>(v4) << " " << get<4>(v4) << "\n";std::cout << get_type_impl<int, decltype(v4.data_)>::get(v4.data_) << " " << get_type_impl<unsigned int, decltype(v4.data_)>::get(v4.data_) << " "<< get_type_impl<long long, decltype(v4.data_)>::get(v4.data_) << " " << get_type_impl<double, decltype(v4.data_)>::get(v4.data_) << " "<< get_type_impl<std::string, decltype(v4.data_)>::get(v4.data_) << "\n";std::cout << get<int>(v4) << " " << get<unsigned int>(v4) << " " << get<long long>(v4) << " " << get<double>(v4) << " " << get<std::string>(v4) << "\n";int int1 = 1;const int int2 = 1;int &int3 = int1;std::cout << variant<int, float, std::string>().type_ << " "<< variant<int, float, std::string>(int1).type_ << " "<< variant<int, float, std::string>(int2).type_ << " "<< variant<int, float, std::string>(int3).type_ << " "<< variant<int, float, std::string>(1.1f).type_ << " "<< variant<int, float, std::string>(std::string("lifehappy")).type_ << "\n";struct Test1 {~ Test1() {std::cout << "~ Test1()\n";}}ta;struct Test2 {~ Test2() {std::cout << "~ Test2()\n";}}tb;variant<int, long long, Test1, Test2> variant_test(ta);std::cout << "OK\n";variant_test = tb;std::cout << "OK\n";return 0;
}

这篇关于variant (C++ 模板元编程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347151

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee