Leetcode 剑指 Offer II 051. 二叉树中的最大路径和

2023-11-05 01:12

本文主要是介绍Leetcode 剑指 Offer II 051. 二叉树中的最大路径和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目难度: 困难

原题链接

今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~

题目描述

路径 被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。

路径和 是路径中各节点值的总和。

给定一个二叉树的根节点 root ,返回其 最大路径和,即所有路径上节点值之和的最大值。

示例 1:

  • 输入:root = [1,2,3]
  • 输出:6
  • 解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6

示例 2:

  • 输入:root = [-10,9,20,null,null,15,7]
  • 输出:42
  • 解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42

提示:

  • 树中节点数目范围是 [1, 3 * 10^4]
  • -1000 <= Node.val <= 1000

题目思考

  1. 最大路径和可能有哪些情况?

解决方案

思路
  • 根据题目描述, 最大路径和无外乎两种情况: 1) 经过根节点; 2) 不经过根节点
  • 我们先来考虑经过根节点的情况, 这里又包含几种可能性:
    1. 只包含根节点自身 (左右子树的路径和都是负值时)
    2. 左子树<->根
    3. 右子树<->根
    4. 左子树<->根<->右子树
  • 以上几种情况的最大值, 就是经过根节点的最大路径和
  • 而对于不经过根节点的情况, 它一定会经过某个子树的根节点, 这样就可以同样利用刚才的分析了
  • 具体实现时, 我们可以利用 DFS, 传入当前节点, 然后返回以当前节点为根的子树的单向最大路径和 (也就是除了情况 4)
  • 这样在处理它的父节点时, 就可以利用得到的返回值, 计算以父节点为根的子树的单向最大路径和了
  • 这样一直递归下去, 就可以得到情况 1~3 的所有可能路径的最大值了
  • 上面之所以返回子树的单向最大路径和, 而不包含情况 4, 是因为那样的话, 父节点就不能利用子节点的返回值来计算了, 以题目的示例 2 为例:
    • 对于节点 20 所在的子树, 其情况 4 对应的路径是 15<->20<->7
    • 如果我们的返回值也考虑它, 那么在处理节点-10 时, 它的右子树对应的最大路径就是 15<->20<->7
    • 但该路径不能再加上节点-10 了, 因为那样会违反题目的要求: 同一个节点在一条路径序列中至多出现一次
  • 所以子树返回的路径只能是单向路径, 不能是情况 4 那样, 穿过子树根节点
  • 由于返回值只考虑了前三种情况, 所以我们需要额外维护一个全局最大路径和, 然后在遍历某个节点时, 将其对应的情况 4 也考虑进去, 这样最终遍历完成时, 那个全局最大路径和即为所求
  • 下面代码中有详细的注释, 方便大家理解
复杂度
  • 时间复杂度 O(N): 每个节点只会被遍历一次
  • 空间复杂度 O(H): 递归调用最多使用 O(H) 栈空间, H 是树的高度
代码
class Solution:def maxPathSum(self, root: TreeNode) -> int:gmx = -float("inf")def getSinglePathMaxSum(node):# 返回以node为根的子树的单向路径最大和nonlocal gmxif not node:return -float("inf")# lmx和rmx分别是左右子树的单向路径最大和lmx = getSinglePathMaxSum(node.left)rmx = getSinglePathMaxSum(node.right)# 求当前节点单向路径最大和, 注意它可能只包含当前节点自身 (例如左右子树路径和都是负数的情况)# 注意单向路径不包含左子树+根+右子树的情况!!!mx = max(node.val, lmx + node.val, rmx + node.val)# 更新全局路径最大和gmx, 这里需要额外考虑左子树+根+右子树的路径gmx = max(gmx, mx, lmx + rmx + node.val)return mxgetSinglePathMaxSum(root)return gmx

大家可以在下面这些地方找到我~😊

我的 GitHub

我的 Leetcode

我的 CSDN

我的知乎专栏

我的头条号

我的牛客网博客

我的公众号: 算法精选, 欢迎大家扫码关注~😊

算法精选 - 微信扫一扫关注我

这篇关于Leetcode 剑指 Offer II 051. 二叉树中的最大路径和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/346405

相关文章

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl