postgresql中geom处理

2023-11-04 10:10
文章标签 postgresql 处理 geom

本文主要是介绍postgresql中geom处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

geom转换为经纬度

SELECTst_x ( geom ) AS lon,st_y ( geom ) AS lat
FROM表名

如果是几何图形会报错

> ERROR:  Argument to ST_X() must have type POINT

这时我们可以改为获取几何图形的中心点的经纬度

SELECTst_x ( ST_PointOnSurface(geom) ) AS lon,st_y ( ST_PointOnSurface(geom) ) AS lat
FROM表名; 

获取几何图形的中心点

SELECT ST_PointOnSurface(geom) FROM 表名 ;

geom转换为POINT

SELECTST_asText ( geom ) 
FROM表名

 SRID查询

SELECT st_srid(geom) FROM 表名;

 SRID转换,如4549转4326

SELECT st_astext(
st_transform(
ST_GeomFromText('POINT(521519.84150795196  3070180.2299377914)', 4549 ), 4326) )

几何类型坐标系转换

SELECT  st_transform(geom,4549) FROM 表名 LIMIT 9;

判断两个几何类型是否相交

SELECT ST_Intersects(geom1, geom2);  

这篇关于postgresql中geom处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/345039

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

PostgreSQL中的多版本并发控制(MVCC)深入解析

引言 PostgreSQL作为一款强大的开源关系数据库管理系统,以其高性能、高可靠性和丰富的功能特性而广受欢迎。在并发控制方面,PostgreSQL采用了多版本并发控制(MVCC)机制,该机制为数据库提供了高效的数据访问和更新能力,同时保证了数据的一致性和隔离性。本文将深入解析PostgreSQL中的MVCC功能,探讨其工作原理、使用场景,并通过具体SQL示例来展示其在实际应用中的表现。 一、

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

使用协程实现高并发的I/O处理

文章目录 1. 协程简介1.1 什么是协程?1.2 协程的特点1.3 Python 中的协程 2. 协程的基本概念2.1 事件循环2.2 协程函数2.3 Future 对象 3. 使用协程实现高并发的 I/O 处理3.1 网络请求3.2 文件读写 4. 实际应用场景4.1 网络爬虫4.2 文件处理 5. 性能分析5.1 上下文切换开销5.2 I/O 等待时间 6. 最佳实践6.1 使用 as

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词