Python greenlet

2023-11-04 02:08
文章标签 python greenlet

本文主要是介绍Python greenlet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python greenlet背景介绍与实现机制

摘要

最近开始研究Python的并行开发技术,包括多线程,多进程,协程等。逐步整理了网上的一些资料,今天整理一下greenlet相关的资料。

最近开始研究Python的并行开发技术,包括多线程,多进程,协程等。逐步整理了网上的一些资料,今天整理一下greenlet相关的资料。

 并发处理的技术背景

并行化处理目前很受重视, 因为在很多时候,并行计算能大大的提高系统吞吐量,尤其在现在多核多处理器的时代, 所以像lisp这种古老的语言又被人们重新拿了起来, 函数式编程也越来越流行。 介绍一个python的并行处理的一个库: greenlet。 python 有一个非常有名的库叫做 stackless ,用来做并发处理, 主要是弄了个叫做tasklet的微线程的东西, 而greenlet 跟stackless的最大区别是, 他很轻量级?不够, 最大的区别是greenlet需要你自己来处理线程切换, 就是说,你需要自己指定现在执行哪个greenlet再执行哪个greenlet。

greenlet的实现机制

以前使用python开发web程序,一直使用的是fastcgi模式.然后每个进程中启动多个线程来进行请求处理.这里有一个问题就是需要保证每个请求响应时间都要特别短,不然只要多请求几次慢的就会让服务器拒绝服务,因为没有线程能够响应请求了.平时我们的服务上线都会进行性能测试的,所以正常情况没有太大问题.但是不可能所有场景都测试到.一旦出现就会让用户等好久没有响应.部分不可用导致全部不可用.后来转换到了coroutine,python 下的greenlet.所以对它的实现机制做了一个简单的了解.
每个greenlet都只是heap中的一个python object(PyGreenlet).所以对于一个进程你创建百万甚至千万个greenlet都没有问题.

Python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
typedef   struct   _greenlet   {
PyObject_HEAD
char *   stack_start ;
char *   stack_stop ;
char *   stack_copy ;
intptr_t  stack_saved ;
struct   _greenlet *   stack_prev ;
struct   _greenlet *   parent ;
PyObject *   run_info ;
struct   _frame *   top_frame ;
int   recursion_depth ;
PyObject *   weakreflist ;
PyObject *   exc_type ;
PyObject *   exc_value ;
PyObject *   exc_traceback ;
PyObject *   dict ;
}   PyGreenlet ;

每一个greenlet其实就是一个函数,以及保存这个函数执行时的上下文.对于函数来说上下文也就是其stack..同一个进程的所有的greenlets共用一个共同的操作系统分配的用户栈.所以同一时刻只能有栈数据不冲突的greenlet使用这个全局的栈.greenlet是通过stack_stop,stack_start来保存其stack的栈底和栈顶的,如果出现将要执行的greenlet的stack_stop和目前栈中的greenlet重叠的情况,就要把这些重叠的greenlet的栈中数据临时保存到heap中.保存的位置通过stack_copy和stack_saved来记录,以便恢复的时候从heap中拷贝回栈中stack_stop和stack_start的位置.不然就会出现其栈数据会被破坏的情况.所以应用程序创建的这些greenlet就是通过不断的拷贝数据到heap中或者从heap中拷贝到栈中来实现并发的.对于io型的应用程序使用coroutine真的非常舒服.

下面是greenlet的一个简单的栈空间模型(from greenlet.c)

Python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
A   PyGreenlet  is   a   range   of   C   stack  addresses  that  must  be
saved  and   restored  in   such   a   way  that  the  full  range   of  the
stack  contains  valid  data  when  we  switch  to  it .
Stack  layout  for   a   greenlet :
                |       ^ ^ ^         |
                |    older  data     |
                |                 |
   stack _stop   .   | _______________ |
         .        |                 |
         .        |   greenlet  data   |
         .        |     in   stack      |
         .      *   | _______________ |   .   .    _____________   stack_copy   +   stack _saved
         .        |                 |       |               |
         .        |       data        |       | greenlet  data |
         .        |     unrelated     |       |      saved      |
         .        |        to         |       |     in   heap     |
stack _start   .   |       this        |   .   .   | _____________ |   stack_copy
                |     greenlet      |
                |                 |
                |    newer  data     |
                |       vvv         |

下面是一段简单的greenlet代码.

Python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from   greenlet  import   greenlet
def   test1 ( ) :
     print   12
     gr2 . switch ( )
     print   34
def   test2 ( ) :
     print   56
     gr1 . switch ( )
     print   78
gr1   =   greenlet ( test1 )
gr2   =   greenlet ( test2 )
gr1 . switch ( )

目前所讨论的协程,一般是编程语言提供支持的。目前我所知提供协程支持的语言包括python,lua,go,erlang, scala和rust。协程不同于线程的地方在于协程不是操作系统进行切换,而是由程序员编码进行切换的,也就是说切换是由程序员控制的,这样就没有了线程所谓的安全问题。
所有的协程都共享整个进程的上下文,这样协程间的交换也非常方便。
相对于第二种方案(I/O多路复用),使得使用协程写的程序将更加的直观,而不是将一个完整的流程拆分成多个管理的事件处理。
协程的缺点可能是无法利用多核优势,不过,这个可以通过协程+进程的方式来解决。
协程可以用来处理并发来提高性能,也可以用来实现状态机来简化编程。我用的更多的是第二个。去年年底接触python,了解到了python的协程概念,后来通过pycon china2011接触到处理yield,greenlet也是一个协程方案,而且在我看来是更可用的一个方案,特别是用来处理状态机。
目前这一块已经基本完成,后面抽时间总结一下。

总结一下:
1)多进程能够利用多核优势,但是进程间通信比较麻烦,另外,进程数目的增加会使性能下降,进程切换的成本较高。程序流程复杂度相对I/O多路复用要低。
2)I/O多路复用是在一个进程内部处理多个逻辑流程,不用进行进程切换,性能较高,另外流程间共享信息简单。但是无法利用多核优势,另外,程序流程被事件处理切割成一个个小块,程序比较复杂,难于理解。
3)线程运行在一个进程内部,由操作系统调度,切换成本较低,另外,他们共享进程的虚拟地址空间,线程间共享信息简单。但是线程安全问题导致线程学习曲线陡峭,而且易出错。
4)协程有编程语言提供,由程序员控制进行切换,所以没有线程安全问题,可以用来处理状态机,并发请求等。但是无法利用多核优势。
上面的四种方案可以配合使用,我比较看好的是进程+协程的模式。

这篇关于Python greenlet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342485

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操