[转] R 代码 00003 18.06.19

2023-11-03 22:08
文章标签 代码 19 18.06 00003

本文主要是介绍[转] R 代码 00003 18.06.19,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 知识来源于网络,仅供交流使用,如有侵权请及时联系予以删除# Libraries
library(data.table)   # 高效数据操作
library(magrittr)  # 管道操作
library(ggplot2)  # 数据可视化
library(stringr)   # 字符串处理
#  library(quanteda)  该包在加载时出现错误
library(gridExtra)  # 多图
library(dplyr)    # 数据操作
library(tidyr)     # 数据操作
library(caTools)  # 工具:移动窗口统计
library(xgboost)  # 极限梯度提升
library(quanteda)   # 文本数据的定量分析
library(SnowballC)  # 基于C libstemmer UTF-8库的雪球词干分析器
library(tm)  # 文本挖掘软件包
library(corrplot)      # 相关矩阵的可视化# Data Overview
setwd("e:/")
system.time(train <- fread('../input/train.tsv', showProgress = T , data.table=F))# 读取数据,包括工具条、读取时间
str(train)# train_id、name、item_condition_id、category_name、brand_name、price、shipping、item_description
dim(train)   # 记录多少
print(object.size(train), units = 'Mb')  # 数据存储大小# 0: Variable Analysis:Price :价格、及其分布
length(train$price[train$price==""])
length(train$price[is.na(train$price)])
range(train$price)
ggplot(train,aes(x=price))+geom_histogram(fill = 'orangered2')  # 分布范围大,但是不均衡,变换log()表示
ggplot(data = train, aes(x = log(price+1,base=10))) + geom_histogram(fill = 'orangered2')# e = 2.718281828459; log(8,2)===>3;   base=exp(1),即e

# 1: Variable Analysis:item_condition_id :产品状况分类情况、及其对价格的影响length(train$item_condition_id[train$item_condition_id==""])
length(train$item_condition_id[is.na(train$item_condition_id)])
table(train$item_condition_id)  # 查看分类分布、与价格关系p1<-train %>%        # 画柱状图
	group_by(item_condition_id) %>%
	summarise(count=length(price),median=median(price))  %>%
	ggplot(aes(x = item_condition_id, y = count)) +  geom_bar(stat = 'identity',fill = "orangered2") 
p2<-train %>%	     # 画箱体图
	ggplot(aes(x = as.factor(item_condition_id), y = log(price+1,base=10))) + 
		stat_boxplot(geom = "errorbar") +  geom_boxplot(fill = "skyblue")  
grid.arrange(p1,p2,nrow=1)# 以下为箱体图的解读样本
# 2:Variable Analysis:Shipping :运费状况,及对价格分布的影响
length(train$shipping[train$shipping==""])
length(train$shipping[is.na(train$shipping)])
table(train$shipping) # 分布状况
train %>% ggplot(aes(x = log(price+1), fill = as.factor(shipping))) + geom_density(adjust=2,alpha= 0.6)# 3:Variable Analysis:brand_name :品牌名称,及对价格分布的影响
length(train$brand_name[train$brand_name==""])
length(train$brand_name[is.na(train$brand_name)])
length(table(train$brand_name))  # 分布状况
train %>%  group_by(brand_name) %>%     summarise(median_price = median(price)) %>%         arrange(desc(median_price)) %>% head(25) %>%        ggplot(aes(x = reorder(brand_name,median_price), y = median_price)) +         geom_point()+coord_flip()# 4:Variable Analysis:category_name :产品分类名称,及对价格分布的影响
length(train$category_name[train$category_name==""])
length(train$category_name[is.na(train$category_name)])
length(unique(train$category_name))# 等价于  length(table(train$category_name))  # 分布状况
sort(table(train$category_name), decreasing = TRUE)[1:10]#分类初始分析train %>%  group_by(category_name) %>%      summarise(median_price = median(price)) %>%             arrange(desc(median_price)) %>% head(25) %>%ggplot(aes(x = reorder(category_name,median_price), y = median_price)) +         geom_point()+coord_flip()# 分类分析,进一步细分splitVar = str_split(train$cat, "/")cat1 = sapply(splitVar,'[',1)cat2 = sapply(splitVar,'[',2)train['cat1'] = cat1train['cat2'] = cat2train$cat1[is.na(train$cat2)] = -1train$cat2[is.na(train$cat3)] = -1train['train$category_name'][is.na(train$train$category_name)] = -1# cat1  分析1train %>%  ggplot(aes(x = cat1, y = log(price+1,base=10))) + stat_boxplot(geom = "errorbar")+
		    geom_boxplot(fill = 'cyan2', color = 'darkgrey') + coord_flip() + labs(y="",title = 'category_name: cat1 观察方法1' )# cat1  分析2
	        p1 <-train %>%group_by(cat1, item_condition_id) %>%summarise(count=length(train_id)) %>%ggplot(aes(x = item_condition_id, y = cat1, fill = count/1000)) +geom_tile() +scale_fill_gradient(low = 'lightblue', high = 'cyan4') +labs(x = 'Condition', y = '', fill = 'Number of items (000s)', title = 'cat1: Item count by category and condition') +	            theme_bw() +  theme(legend.position = 'bottom')
	        p2 <-train %>%
		        group_by(cat1, item_condition_id) %>%
		        summarise(median_price=median(price)) %>%
		        ggplot(aes(x = item_condition_id, y = cat1, fill = median_price)) +
			    geom_tile() + scale_fill_gradient(low = 'lightblue', high = 'cyan4') +
			    labs(x = 'Condition', y = '', fill = 'median_price', title = 'cat1: Item price by category and condition') +
			    theme_bw() + theme(legend.position = 'bottom', axis.text.y = element_blank())
	        grid.arrange(p1, p2, ncol = 2)# cat2  分析ss<- train  %>% group_by(cat2) %>%summarise(median=median(price)) %>% arrange(desc(median)) %>% head(15)train %>%  filter(cat2 %in% ss$cat2) %>% select(c("price","cat1","cat2","category_name")) %>%
	        ggplot(aes(x = cat2, y = log(price+1))) + stat_boxplot(geom = "errorbar") + 
		geom_boxplot(fill = 'cyan2', color = 'darkgrey') + coord_flip()# 5:Variable Analysis:item_despription :产品分描述train['desclength'] = str_length(train$item_description)train$desclength[train$item_description == 'No description yet']<- NAcor(train$price,train$desc_length,use='complete.obs')
# 以下为部分文本分析内容,等待学习
corpus = Corpus(VectorSource(train$item_description))   #将要分析的变量加载到适当的格式中。
corpus = tm_map(corpus, tolower)          # 小写所有单词
corpus = tm_map(corpus, removePunctuation)  # 删除标点符号
corpus = tm_map(corpus, removeWords, stopwords("english"))  #去停用词
dataframe <- data.frame(text=sapply(corpus, identity),stringsAsFactors=F)    #转换为数据框
train$item_description = dataframe$text    #附加到原数据中

这篇关于[转] R 代码 00003 18.06.19的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341176

相关文章

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

详解Spring Boot接收参数的19种方式

《详解SpringBoot接收参数的19种方式》SpringBoot提供了多种注解来接收不同类型的参数,本文给大家介绍SpringBoot接收参数的19种方式,感兴趣的朋友跟随小编一起看看吧... 目录SpringBoot接受参数相关@PathVariable注解@RequestHeader注解@Reque

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona