[转] R 代码 00003 18.06.19

2023-11-03 22:08
文章标签 代码 19 18.06 00003

本文主要是介绍[转] R 代码 00003 18.06.19,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 知识来源于网络,仅供交流使用,如有侵权请及时联系予以删除# Libraries
library(data.table)   # 高效数据操作
library(magrittr)  # 管道操作
library(ggplot2)  # 数据可视化
library(stringr)   # 字符串处理
#  library(quanteda)  该包在加载时出现错误
library(gridExtra)  # 多图
library(dplyr)    # 数据操作
library(tidyr)     # 数据操作
library(caTools)  # 工具:移动窗口统计
library(xgboost)  # 极限梯度提升
library(quanteda)   # 文本数据的定量分析
library(SnowballC)  # 基于C libstemmer UTF-8库的雪球词干分析器
library(tm)  # 文本挖掘软件包
library(corrplot)      # 相关矩阵的可视化# Data Overview
setwd("e:/")
system.time(train <- fread('../input/train.tsv', showProgress = T , data.table=F))# 读取数据,包括工具条、读取时间
str(train)# train_id、name、item_condition_id、category_name、brand_name、price、shipping、item_description
dim(train)   # 记录多少
print(object.size(train), units = 'Mb')  # 数据存储大小# 0: Variable Analysis:Price :价格、及其分布
length(train$price[train$price==""])
length(train$price[is.na(train$price)])
range(train$price)
ggplot(train,aes(x=price))+geom_histogram(fill = 'orangered2')  # 分布范围大,但是不均衡,变换log()表示
ggplot(data = train, aes(x = log(price+1,base=10))) + geom_histogram(fill = 'orangered2')# e = 2.718281828459; log(8,2)===>3;   base=exp(1),即e

# 1: Variable Analysis:item_condition_id :产品状况分类情况、及其对价格的影响length(train$item_condition_id[train$item_condition_id==""])
length(train$item_condition_id[is.na(train$item_condition_id)])
table(train$item_condition_id)  # 查看分类分布、与价格关系p1<-train %>%        # 画柱状图
	group_by(item_condition_id) %>%
	summarise(count=length(price),median=median(price))  %>%
	ggplot(aes(x = item_condition_id, y = count)) +  geom_bar(stat = 'identity',fill = "orangered2") 
p2<-train %>%	     # 画箱体图
	ggplot(aes(x = as.factor(item_condition_id), y = log(price+1,base=10))) + 
		stat_boxplot(geom = "errorbar") +  geom_boxplot(fill = "skyblue")  
grid.arrange(p1,p2,nrow=1)# 以下为箱体图的解读样本
# 2:Variable Analysis:Shipping :运费状况,及对价格分布的影响
length(train$shipping[train$shipping==""])
length(train$shipping[is.na(train$shipping)])
table(train$shipping) # 分布状况
train %>% ggplot(aes(x = log(price+1), fill = as.factor(shipping))) + geom_density(adjust=2,alpha= 0.6)# 3:Variable Analysis:brand_name :品牌名称,及对价格分布的影响
length(train$brand_name[train$brand_name==""])
length(train$brand_name[is.na(train$brand_name)])
length(table(train$brand_name))  # 分布状况
train %>%  group_by(brand_name) %>%     summarise(median_price = median(price)) %>%         arrange(desc(median_price)) %>% head(25) %>%        ggplot(aes(x = reorder(brand_name,median_price), y = median_price)) +         geom_point()+coord_flip()# 4:Variable Analysis:category_name :产品分类名称,及对价格分布的影响
length(train$category_name[train$category_name==""])
length(train$category_name[is.na(train$category_name)])
length(unique(train$category_name))# 等价于  length(table(train$category_name))  # 分布状况
sort(table(train$category_name), decreasing = TRUE)[1:10]#分类初始分析train %>%  group_by(category_name) %>%      summarise(median_price = median(price)) %>%             arrange(desc(median_price)) %>% head(25) %>%ggplot(aes(x = reorder(category_name,median_price), y = median_price)) +         geom_point()+coord_flip()# 分类分析,进一步细分splitVar = str_split(train$cat, "/")cat1 = sapply(splitVar,'[',1)cat2 = sapply(splitVar,'[',2)train['cat1'] = cat1train['cat2'] = cat2train$cat1[is.na(train$cat2)] = -1train$cat2[is.na(train$cat3)] = -1train['train$category_name'][is.na(train$train$category_name)] = -1# cat1  分析1train %>%  ggplot(aes(x = cat1, y = log(price+1,base=10))) + stat_boxplot(geom = "errorbar")+
		    geom_boxplot(fill = 'cyan2', color = 'darkgrey') + coord_flip() + labs(y="",title = 'category_name: cat1 观察方法1' )# cat1  分析2
	        p1 <-train %>%group_by(cat1, item_condition_id) %>%summarise(count=length(train_id)) %>%ggplot(aes(x = item_condition_id, y = cat1, fill = count/1000)) +geom_tile() +scale_fill_gradient(low = 'lightblue', high = 'cyan4') +labs(x = 'Condition', y = '', fill = 'Number of items (000s)', title = 'cat1: Item count by category and condition') +	            theme_bw() +  theme(legend.position = 'bottom')
	        p2 <-train %>%
		        group_by(cat1, item_condition_id) %>%
		        summarise(median_price=median(price)) %>%
		        ggplot(aes(x = item_condition_id, y = cat1, fill = median_price)) +
			    geom_tile() + scale_fill_gradient(low = 'lightblue', high = 'cyan4') +
			    labs(x = 'Condition', y = '', fill = 'median_price', title = 'cat1: Item price by category and condition') +
			    theme_bw() + theme(legend.position = 'bottom', axis.text.y = element_blank())
	        grid.arrange(p1, p2, ncol = 2)# cat2  分析ss<- train  %>% group_by(cat2) %>%summarise(median=median(price)) %>% arrange(desc(median)) %>% head(15)train %>%  filter(cat2 %in% ss$cat2) %>% select(c("price","cat1","cat2","category_name")) %>%
	        ggplot(aes(x = cat2, y = log(price+1))) + stat_boxplot(geom = "errorbar") + 
		geom_boxplot(fill = 'cyan2', color = 'darkgrey') + coord_flip()# 5:Variable Analysis:item_despription :产品分描述train['desclength'] = str_length(train$item_description)train$desclength[train$item_description == 'No description yet']<- NAcor(train$price,train$desc_length,use='complete.obs')
# 以下为部分文本分析内容,等待学习
corpus = Corpus(VectorSource(train$item_description))   #将要分析的变量加载到适当的格式中。
corpus = tm_map(corpus, tolower)          # 小写所有单词
corpus = tm_map(corpus, removePunctuation)  # 删除标点符号
corpus = tm_map(corpus, removeWords, stopwords("english"))  #去停用词
dataframe <- data.frame(text=sapply(corpus, identity),stringsAsFactors=F)    #转换为数据框
train$item_description = dataframe$text    #附加到原数据中

这篇关于[转] R 代码 00003 18.06.19的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341176

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时