本文主要是介绍LA - 4043 - Ants(二分图最佳完美匹配),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题意:n只蚂蚁,n棵树,每只蚂蚁要连一棵树,连线(直线)不能相交,给出n只蚂蚁和n棵树的坐标,输出n只蚂蚁所配对的树的编号(1 <= n <= 100, -10000 <= 坐标x, y <= 10000)。
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2044
——>>二分图最佳完美匹配第一题,挺简单,也挺容易写错。
很明显,蚂蚁为一个顶点集,树为一个顶点集,如果从蚂蚁向树匹配,那么最后输出前要先做一次o(n)的映射,如果从树向蚂蚁匹配,则最后可直接输出。
建图:以n棵树为X点,以n只蚂蚁为Y点,权值w[i][j]为树i到蚂蚁j的距离的相反数(二分图最佳完美匹配求的是权和最大,而我们要的是权和最小(这样就不会有线段相交),所以权值取了相反数后变成了求二分图的最大完美匹配),跑一次KM就好。
#include <cstdio>
#include <cmath>
#include <algorithm>using namespace std;const int maxn = 100 + 10;
const double eps = 1e-10;int n, fa[maxn];
double w[maxn][maxn], Lx[maxn], Ly[maxn];
bool S[maxn], T[maxn];struct Point{double x, y;Point(double x = 0, double y = 0):x(x), y(y){}
};Point ant[maxn], tree[maxn];double Dis(Point A, Point B){return sqrt((A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y));
}bool match(int i){S[i] = 1;for(int j = 1; j <= n; j++) if(fabs(Lx[i]+Ly[j]-w[i][j]) < eps && !T[j]){T[j] = 1;if(!fa[j] || match(fa[j])){fa[j] = i;return 1;}}return 0;
}void update(){double a = 1 << 30;for(int i = 1; i <= n; i++) if(S[i])for(int j = 1; j <= n; j++) if(!T[j])a = min(a, Lx[i]+Ly[j]-w[i][j]);for(int i = 1; i <= n; i++){if(S[i]) Lx[i] -= a;if(T[i]) Ly[i] += a;}
}void KM(){for(int i = 1; i <= n; i++) fa[i] = Lx[i] = Ly[i] = 0;for(int i = 1; i <= n; i++){while(1){for(int j = 1; j <= n; j++) S[j] = T[j] = 0;if(match(i)) break;else update();}}
}int main()
{int first = 1;while(scanf("%d", &n) == 1){for(int i = 1; i <= n; i++) scanf("%lf%lf", &ant[i].x, &ant[i].y);for(int i = 1; i <= n; i++) scanf("%lf%lf", &tree[i].x, &tree[i].y);for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++)w[i][j] = -Dis(tree[i], ant[j]); //计算树i与蚂蚁j的距离,并用其相反数作权值KM();if(first) first = 0;else puts("");for(int i = 1; i <= n; i++) printf("%d\n", fa[i]);}return 0;
}
这篇关于LA - 4043 - Ants(二分图最佳完美匹配)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!