LA - 4043 - Ants(二分图最佳完美匹配)

2023-11-03 12:58

本文主要是介绍LA - 4043 - Ants(二分图最佳完美匹配),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:n只蚂蚁,n棵树,每只蚂蚁要连一棵树,连线(直线)不能相交,给出n只蚂蚁和n棵树的坐标,输出n只蚂蚁所配对的树的编号(1 <= n <= 100, -10000 <= 坐标x, y <= 10000)。

题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2044

——>>二分图最佳完美匹配第一题,挺简单,也挺容易写错。

很明显,蚂蚁为一个顶点集,树为一个顶点集,如果从蚂蚁向树匹配,那么最后输出前要先做一次o(n)的映射,如果从树向蚂蚁匹配,则最后可直接输出。

建图:以n棵树为X点,以n只蚂蚁为Y点,权值w[i][j]为树i到蚂蚁j的距离的相反数(二分图最佳完美匹配求的是权和最大,而我们要的是权和最小(这样就不会有线段相交),所以权值取了相反数后变成了求二分图的最大完美匹配),跑一次KM就好。

#include <cstdio>
#include <cmath>
#include <algorithm>using namespace std;const int maxn = 100 + 10;
const double eps = 1e-10;int n, fa[maxn];
double w[maxn][maxn], Lx[maxn], Ly[maxn];
bool S[maxn], T[maxn];struct Point{double x, y;Point(double x = 0, double y = 0):x(x), y(y){}
};Point ant[maxn], tree[maxn];double Dis(Point A, Point B){return sqrt((A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y));
}bool match(int i){S[i] = 1;for(int j = 1; j <= n; j++) if(fabs(Lx[i]+Ly[j]-w[i][j]) < eps && !T[j]){T[j] = 1;if(!fa[j] || match(fa[j])){fa[j] = i;return 1;}}return 0;
}void update(){double a = 1 << 30;for(int i = 1; i <= n; i++) if(S[i])for(int j = 1; j <= n; j++) if(!T[j])a = min(a, Lx[i]+Ly[j]-w[i][j]);for(int i = 1; i <= n; i++){if(S[i]) Lx[i] -= a;if(T[i]) Ly[i] += a;}
}void KM(){for(int i = 1; i <= n; i++) fa[i] = Lx[i] = Ly[i] = 0;for(int i = 1; i <= n; i++){while(1){for(int j = 1; j <= n; j++) S[j] = T[j] = 0;if(match(i)) break;else update();}}
}int main()
{int first = 1;while(scanf("%d", &n) == 1){for(int i = 1; i <= n; i++) scanf("%lf%lf", &ant[i].x, &ant[i].y);for(int i = 1; i <= n; i++) scanf("%lf%lf", &tree[i].x, &tree[i].y);for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++)w[i][j] = -Dis(tree[i], ant[j]);        //计算树i与蚂蚁j的距离,并用其相反数作权值KM();if(first) first = 0;else puts("");for(int i = 1; i <= n; i++) printf("%d\n", fa[i]);}return 0;
}


这篇关于LA - 4043 - Ants(二分图最佳完美匹配)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338313

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

poj 3104 二分答案

题意: n件湿度为num的衣服,每秒钟自己可以蒸发掉1个湿度。 然而如果使用了暖炉,每秒可以烧掉k个湿度,但不计算蒸发了。 现在问这么多的衣服,怎么烧事件最短。 解析: 二分答案咯。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <c

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

hdu 3065 AC自动机 匹配串编号以及出现次数

题意: 仍旧是天朝语题。 Input 第一行,一个整数N(1<=N<=1000),表示病毒特征码的个数。 接下来N行,每行表示一个病毒特征码,特征码字符串长度在1—50之间,并且只包含“英文大写字符”。任意两个病毒特征码,不会完全相同。 在这之后一行,表示“万恶之源”网站源码,源码字符串长度在2000000之内。字符串中字符都是ASCII码可见字符(不包括回车)。