LA - 4043 - Ants(二分图最佳完美匹配)

2023-11-03 12:58

本文主要是介绍LA - 4043 - Ants(二分图最佳完美匹配),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:n只蚂蚁,n棵树,每只蚂蚁要连一棵树,连线(直线)不能相交,给出n只蚂蚁和n棵树的坐标,输出n只蚂蚁所配对的树的编号(1 <= n <= 100, -10000 <= 坐标x, y <= 10000)。

题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2044

——>>二分图最佳完美匹配第一题,挺简单,也挺容易写错。

很明显,蚂蚁为一个顶点集,树为一个顶点集,如果从蚂蚁向树匹配,那么最后输出前要先做一次o(n)的映射,如果从树向蚂蚁匹配,则最后可直接输出。

建图:以n棵树为X点,以n只蚂蚁为Y点,权值w[i][j]为树i到蚂蚁j的距离的相反数(二分图最佳完美匹配求的是权和最大,而我们要的是权和最小(这样就不会有线段相交),所以权值取了相反数后变成了求二分图的最大完美匹配),跑一次KM就好。

#include <cstdio>
#include <cmath>
#include <algorithm>using namespace std;const int maxn = 100 + 10;
const double eps = 1e-10;int n, fa[maxn];
double w[maxn][maxn], Lx[maxn], Ly[maxn];
bool S[maxn], T[maxn];struct Point{double x, y;Point(double x = 0, double y = 0):x(x), y(y){}
};Point ant[maxn], tree[maxn];double Dis(Point A, Point B){return sqrt((A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y));
}bool match(int i){S[i] = 1;for(int j = 1; j <= n; j++) if(fabs(Lx[i]+Ly[j]-w[i][j]) < eps && !T[j]){T[j] = 1;if(!fa[j] || match(fa[j])){fa[j] = i;return 1;}}return 0;
}void update(){double a = 1 << 30;for(int i = 1; i <= n; i++) if(S[i])for(int j = 1; j <= n; j++) if(!T[j])a = min(a, Lx[i]+Ly[j]-w[i][j]);for(int i = 1; i <= n; i++){if(S[i]) Lx[i] -= a;if(T[i]) Ly[i] += a;}
}void KM(){for(int i = 1; i <= n; i++) fa[i] = Lx[i] = Ly[i] = 0;for(int i = 1; i <= n; i++){while(1){for(int j = 1; j <= n; j++) S[j] = T[j] = 0;if(match(i)) break;else update();}}
}int main()
{int first = 1;while(scanf("%d", &n) == 1){for(int i = 1; i <= n; i++) scanf("%lf%lf", &ant[i].x, &ant[i].y);for(int i = 1; i <= n; i++) scanf("%lf%lf", &tree[i].x, &tree[i].y);for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++)w[i][j] = -Dis(tree[i], ant[j]);        //计算树i与蚂蚁j的距离,并用其相反数作权值KM();if(first) first = 0;else puts("");for(int i = 1; i <= n; i++) printf("%d\n", fa[i]);}return 0;
}


这篇关于LA - 4043 - Ants(二分图最佳完美匹配)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338313

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较