python cv2 指针仪表读数

2023-11-03 12:10
文章标签 python 指针 cv2 仪表 读数

本文主要是介绍python cv2 指针仪表读数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cv2识别指针式仪表(持续更新)

    • 问题描述
    • 解决方案
    • 效果预览
    • python cv2实现
      • 1、模板匹配
      • 2、直线拟合
      • 3、表盘读数
    • 提升准确率的方法
    • 参考资料


问题描述

最近遇到一个仪表盘读数的问题,主要要识别三种仪表盘
四分之一圆
圆形
双指针
参考了许多博客和论文,打算先用一种传统的方法试一下


解决方案

方案一:传统方法

  1. 模板匹配
  2. 直线拟合
  3. 表盘读数

方案二: 深度学习 (后续实现)

  1. YOLOX等目标检测方法识别表盘
  2. 目标检测方法识别数字、指针、指针旋转原点
  3. 欧式距离求相邻数字
  4. 字符识别模型识别数字
  5. 根据相邻数字求得指针所指数值

效果预览

1、原图
原图
2、模板图
模板图
3、模板匹配结果
模板匹配结果
4、识别结果

可以看出识别结果会有细微的偏差,但是通过调参可以缩小误差


python cv2实现

1、模板匹配

选取合适的模板图,并根据模板图中关键点坐标求出各角度对应数值

import cv2
import numpy as np
from math import cos, pi, sin, acos#模板匹配方法
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
method = cv2.TM_CCOEFF_NORMED#centers表示所有模板图片的指针中心点坐标,(0,0)位于图片左上角
centers = [[47,50],[67,74],[102,96],[63,64],[66,67],[65,67],[107,105],[104,106],[94,89],[57,55],[66,71]]
#scales表示所有模板图片刻度线所在坐标
scales=[{0:(8,68),1000:(7,46),2000:(14,20),3000:(38,8),4000:(64,5),5000:(84,22),6000:(98,42),7000:(96,66)},{0:(13,67),150:(17,50),200:(21,36),250:(30,27),300:(41,22),450:(65,18)},{0:(24,97),1000:(27,73),1500:(30,50),2000:(47,40),2500:(56,28),3000:(68,25),4000:(83,16),5000:(93,16),6000:(99,17)},{0:(14,63),50:(19,48),100:(26,29),150:(44,17),200:(65,13)},{0:(14,67),200:(17,46),300:(24,32),400:(36,22),500:(50,15),600:(65,13)},{0:(15,66),10:(14,55),20:(19,39),30:(32,36),40:(46,15),50:(63,13)},{0:(30,105),1:(26,86),2:(36,71),3:(40,52),4:(58,42),5:(71,27),6:(90,27),7.2:(110,19)},{0:(20,105),20:(21,80),40:(35,58),60:(54,39),80:(77,27),100:(101,26)},{0:(25,90),0.5:(24,77),1.0:(32,57),1.5:(47,38),2.0:(66,24),2.5:(91,19)},{0:(13,55),100:(12,45),200:(18,29),300:(29,19),400:(38,12),600:(57,10)},{0:(18,71),200:(16,62),400:(21,43),600:(31,26),800:(43,18),1000:(64,14)}]
#angles表示所有模板图片对应刻度相对中心点的角度
angles=[]
#模板原图大小
original_template_image_size = [(128,124),(107,105),(164,166),(99,97),(104,107),(106,99),(163,160),(161,162),(140,140),(95,104),(112,114)]#计算各个模板图刻度对应的角度
def calculate_angles(centers, scales):template_number = len(centers)for i in range(0, template_number):angles.append({})#print(f"模板{i+1}:")for k, v in scales[i].items():#第一个模板图片为圆形表盘,以中心点为轴,→为起始边向下旋转所成角度为r,r属于(0,360)if i == 0:r = acos((v[0] - centers[i][0])/((v[0] - centers[i][0]) ** 2 + (v[1] - centers[i][1]) ** 2) ** 0.5)r = int(r * 180 / pi)if 1000 < k < 7000:r = 360 - relse:r = acos((centers[i][0] - v[0])/((v[0] - centers[i][0]) ** 2 + (v[1] - centers[i][1]) ** 2) ** 0.5)r = int(r * 180 / pi)angles[i][k]=r#print(f"{k}刻度的角度为:",angles[i][k])calculate_angles(centers,scales)

Tips:

  1. 模板匹配方法的选取可能对结果产生巨大影响
  2. 模板图片选取十分重要!!

2、直线拟合

对于一红一黑双指针问题,先识别红指针,再识别黑指针。具体问题具体分析,关键在于获取指针角度,而不是识别出指针

#获取指定图片的指针角度
def get_pointer_angle(img, template_type):#shape = img.shapecenter = centers[template_type]center_x = center[0]center_y = center[1]freq_list = []#圆形表盘if template_type == 0:for i in range(361):x = 0.6 * center_x * cos(i * pi / 180) + center_xy = 0.6 * center_x * sin(i * pi / 180) + center_yx1 = 0.4 * center_x * cos(i * pi / 180) + center_xy1 = 0.4 * center_x * sin(i * pi / 180) + center_ytemp = img.copy()cv2.line(temp, (int(x1), int(y1)), (int(x), int(y)), 255, thickness=2)freq_list.append((np.sum(temp), i))#cv2.imshow('get_pointer_angle', temp)#cv2.waitKey(10)else:for i in range(91):x = center_x - 0.6 * center_x * cos(i * pi / 180)y = center_y - 0.6 * center_x * sin(i * pi / 180)temp = img.copy()cv2.line(temp, (center_x, center_y), (int(x), int(y)), 255, thickness=2)freq_list.append((np.sum(temp), i))#cv2.imshow('get_pointer_angle', temp)#cv2.waitKey(30)#cv2.destroyAllWindows()freq = max(freq_list, key = lambda x:x[0])return freq[1]#对于一红一黑双指针,先识别出红指针
def get_red_pointer_angle(img, template_type):center = centers[template_type]center_x = center[0]center_y = center[1]freq_list = []for i in range(91):x = center_x - 0.6 * center_x * cos(i * pi / 180)y = center_y - 0.6 * center_y * sin(i * pi / 180)temp = img.copy()cv2.line(temp, (center_x, center_y), (int(x), int(y)), (0, 0, 255), thickness=2)#cv2.imshow('red_pointer', temp)#cv2.waitKey(30)temp = np.sum(temp, axis=0)temp = np.sum(temp, axis=0)#获取图片中红色亮度的总和temp = temp[2]freq_list.append((np.sum(temp), i))#cv2.destroyAllWindows()freq = min(freq_list, key = lambda x:x[0])red_pointer_angle = freq[1]return red_pointer_angle

3、表盘读数

根据指针角度求数值

#根据角度和表盘类型,求得指针式仪表盘数值
def get_pointer_meter_value(angle, template_type):#value是所要求得指针数值,scale_value_down是刚好小于指针数值的表盘刻度数值,scale_value_over是刚好大于指针数值的表盘刻度数值value = 0scale_value_down = -1scale_value_up = 0#表盘为圆形if template_type == 0:if angles[template_type][0] < angle < angles[template_type][1000]:scale_value_down = 0scale_value_up = 1000elif angles[template_type][1000] < angle < angles[template_type][2000]:scale_value_down = 1000scale_value_up = 2000elif angles[template_type][2000] < angle < angles[template_type][3000]:scale_value_down = 2000scale_value_up = 3000elif angles[template_type][3000] < angle < angles[template_type][4000]:scale_value_down = 3000scale_value_up = 4000elif angles[template_type][4000] < angle < angles[template_type][5000]:scale_value_down = 4000scale_value_up = 5000elif angles[template_type][5000] < angle < angles[template_type][6000]:scale_value_down = 5000scale_value_up = 6000elif angles[template_type][7000] < angle < angles[template_type][0]:return 0else:angles_difference_angle = angles[template_type][7000] + 360 - angles[template_type][6000]if angle > angles[template_type][6000]:pointer_difference_angle = angle - angles[template_type][6000]else:pointer_difference_angle = angle + 360 - angles[template_type][6000]value = 6000 + 1000 * pointer_difference_angle / angles_difference_anglereturn value#表盘为四分之一圆else:    for k,v in angles[template_type].items():if angle < v:if k==0:return 0else:scale_value_up = kif scale_value_down != -1:break;else:scale_value_down = kangles_difference_angle = angles[template_type][scale_value_up] - angles[template_type][scale_value_down] #刻度线间角度差值pointer_difference_angle = angle - angles[template_type][scale_value_down]#下游刻度线与指针角度的差值value = scale_value_down + (scale_value_up-scale_value_down) * pointer_difference_angle / angles_difference_anglereturn value

提升准确率的方法

  1. 选用更规范的模板图片
  2. 选用其他模板匹配方法
  3. 调整模板图尺寸
  4. 直线拟合时采用更高精度
  5. 直线拟合选取更优直线宽度
  6. 高斯滤波等去噪手段预处理

完整源码地址:https://github.com/frankstorming/meter_reading


参考资料

使用OpenCV进行仪表数值读取

基于深度学习的指针式仪表图像智能读数方法

这篇关于python cv2 指针仪表读数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338088

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

go 指针接收者和值接收者的区别小结

《go指针接收者和值接收者的区别小结》在Go语言中,值接收者和指针接收者是方法定义中的两种接收者类型,本文主要介绍了go指针接收者和值接收者的区别小结,文中通过示例代码介绍的非常详细,需要的朋友们下... 目录go 指针接收者和值接收者的区别易错点辨析go 指针接收者和值接收者的区别指针接收者和值接收者的

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下