cf----2019-11-20( Anastasia and pebbles,Mice problem,Oleg and shares)

2023-11-03 01:59

本文主要是介绍cf----2019-11-20( Anastasia and pebbles,Mice problem,Oleg and shares),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

思绪不断阻挡着回忆播放,盲目的追寻仍然空空荡荡,灰蒙蒙的夜晚睡意又不知躲到哪去,一转身孤单已躺在身旁。

Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park.

She has only two pockets. She can put at most k pebbles in each pocket at the same time. There are n different pebble types in the park, and there are wi pebbles of the i-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day.

Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket.

Input

The first line contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket.

The second line contains n integers w1, w2, ..., wn (1 ≤ wi ≤ 104) — number of pebbles of each type.

Output

The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles.

Examples

input

Copy

3 2
2 3 4

output

Copy

3

input

Copy

5 4
3 1 8 9 7

output

Copy

5

Note

In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day.

Optimal sequence of actions in the second sample case:

  • In the first day Anastasia collects 8 pebbles of the third type.
  • In the second day she collects 8 pebbles of the fourth type.
  • In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type.
  • In the fourth day she collects 7 pebbles of the fifth type.
  • In the fifth day she collects 1 pebble of the second type.
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <ctime>
#include <cctype>
#include <bitset>
#include <utility>
#include <sstream>
#include <complex>
#include <iomanip>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
ll n,k,x;
int main()
{while(cin>>n>>k){ll sum=0;for(int i=0;i<n;i++){cin>>x;sum+=(x+k-1)/k;}cout<<(sum+1)/2<<endl;}return 0;
}

Igor the analyst fell asleep on the work and had a strange dream. In the dream his desk was crowded with computer mice, so he bought a mousetrap to catch them.

The desk can be considered as an infinite plane, then the mousetrap is a rectangle which sides are parallel to the axes, and which opposite sides are located in points (x1, y1) and (x2, y2).

Igor wants to catch all mice. Igor has analysed their behavior and discovered that each mouse is moving along a straight line with constant speed, the speed of the i-th mouse is equal to (vix, viy), that means that the x coordinate of the mouse increases by vix units per second, while the y coordinates increases by viy units. The mousetrap is open initially so that the mice are able to move freely on the desk. Igor can close the mousetrap at any moment catching all the mice that are strictly inside the mousetrap.

Igor works a lot, so he is busy in the dream as well, and he asks you to write a program that by given mousetrap's coordinates, the initial coordinates of the mice and their speeds determines the earliest time moment in which he is able to catch all the mice. Please note that Igor can close the mousetrap only once.

Input

The first line contains single integer n (1 ≤ n ≤ 100 000) — the number of computer mice on the desk.

The second line contains four integers x1, y1, x2 and y2 (0 ≤ x1 ≤ x2 ≤ 100 000), (0 ≤ y1 ≤ y2 ≤ 100 000) — the coordinates of the opposite corners of the mousetrap.

The next n lines contain the information about mice.

The i-th of these lines contains four integers rixriyvix and viy, (0 ≤ rix, riy ≤ 100 000,  - 100 000 ≤ vix, viy ≤ 100 000), where (rix, riy) is the initial position of the mouse, and (vix, viy) is its speed.

Output

In the only line print minimum possible non-negative number t such that if Igor closes the mousetrap at t seconds from the beginning, then all the mice are strictly inside the mousetrap. If there is no such t, print -1.

Your answer is considered correct if its absolute or relative error doesn't exceed 10 - 6.

Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if .

Examples

input

Copy

4
7 7 9 8
3 5 7 5
7 5 2 4
3 3 7 8
6 6 3 2

output

Copy

0.57142857142857139685

input

Copy

4
7 7 9 8
0 3 -5 4
5 0 5 4
9 9 -1 -6
10 5 -7 -10

output

Copy

-1

Note

Here is a picture of the first sample

Points A, B, C, D - start mice positions, segments are their paths.

Then, at first time when all mice will be in rectangle it will be looks like this:

Here is a picture of the second sample

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <ctime>
#include <cctype>
#include <bitset>
#include <utility>
#include <sstream>
#include <complex>
#include <iomanip>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
int n,x1,y1,x2,y2;
double l=0,r=1e11;
void gx(int dd,int L,int R,int v)
{if(v==0){if(dd>L&&dd<R)return;r=-1;}double t1=(double)(L-dd)/v,t2=(double)(R-dd)/v;if(t1>t2)swap(t1,t2);l=max(l,t1);r=min(r,t2);
}int main()
{scanf("%d",&n);scanf("%d%d%d%d",&x1,&y1,&x2,&y2);for(int i=1; i<=n; i++){int x,y,xx,yy;scanf("%d%d%d%d",&x,&y,&xx,&yy);gx(x,x1,x2,xx);gx(y,y1,y2,yy);}if(r-l>=1e-11&&r>0)printf("%.20f\n",l);elseprintf("-1\n");return 0;
}

Oleg the bank client checks share prices every day. There are n share prices he is interested in. Today he observed that each second exactly one of these prices decreases by k rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all n prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?

Input

The first line contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109) — the number of share prices, and the amount of rubles some price decreases each second.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the initial prices.

Output

Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.

Examples

input

Copy

3 3
12 9 15

output

Copy

3

input

Copy

2 2
10 9

output

Copy

-1

input

Copy

4 1
1 1000000000 1000000000 1000000000

output

Copy

2999999997

Note

Consider the first example.

Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.

There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.

In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.

In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <ctime>
#include <cctype>
#include <bitset>
#include <utility>
#include <sstream>
#include <complex>
#include <iomanip>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
ll n, k;
vector<ll> jg;
int main()
{while (cin >> n >> k){ll ans = 0;ll mi = INT_MAX;jg.clear();for (ll i = 0; i < n; i++){ll ls;cin >> ls;jg.push_back(ls);if (ls < mi)mi = ls;}for (int i = 0; i < n; i++){if ((jg[i] - mi) % k){ans = -1;break;}elseans += ((jg[i] - mi) / k);}cout << ans << endl;}return 0;
}

 

这篇关于cf----2019-11-20( Anastasia and pebbles,Mice problem,Oleg and shares)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/334785

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

BUUCTF靶场[web][极客大挑战 2019]Http、[HCTF 2018]admin

目录   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 [web][HCTF 2018]admin 考点:弱密码字典爆破 四种方法:   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 访问环境 老规矩,我们先查看源代码

cf 164 C 费用流

给你n个任务,k个机器,n个任务的起始时间,持续时间,完成任务的获利 每个机器可以完成任何一项任务,但是同一时刻只能完成一项任务,一旦某台机器在完成某项任务时,直到任务结束,这台机器都不能去做其他任务 最后问你当获利最大时,应该安排那些机器工作,即输出方案 具体建图方法: 新建源汇S T‘ 对任务按照起始时间s按升序排序 拆点: u 向 u'连一条边 容量为 1 费用为 -c,

CF 508C

点击打开链接 import java.util.Arrays;import java.util.Scanner;public class Main {public static void main(String [] args){new Solve().run() ;} }class Solve{int bit[] = new int[608] ;int l

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

【JavaScript】LeetCode:16-20

文章目录 16 无重复字符的最长字串17 找到字符串中所有字母异位词18 和为K的子数组19 滑动窗口最大值20 最小覆盖字串 16 无重复字符的最长字串 滑动窗口 + 哈希表这里用哈希集合Set()实现。左指针i,右指针j,从头遍历数组,若j指针指向的元素不在set中,则加入该元素,否则更新结果res,删除集合中i指针指向的元素,进入下一轮循环。 /*** @param

【CF】C. Glass Carving(二分 + 树状数组 + 优先队列 + 数组计数)

这题简直蛋疼死。。。。。 A了一下午 #include<cstdio>#include<queue>#include<cstring>#include<algorithm>using namespace std;typedef long long LL;const int maxn = 200005;int h,w,n;int C1[maxn],C2[maxn];int

【CF】E. Anya and Cubes(双向DFS)

根据题意的话每次递归分3种情况 一共最多25个数,时间复杂度为3^25,太大了 我们可以分2次求解第一次求一半的结果,也就是25/2 = 12,记录结果 之后利用剩余的一半求结果 s-结果 = 之前记录过的结果 就可以 时间复杂度降低为 3 ^ (n/2+1) 题目链接:http://codeforces.com/contest/525/problem/E #include<set