统计_三门问题:贝叶斯解答

2023-11-02 14:32

本文主要是介绍统计_三门问题:贝叶斯解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、三门问题

“假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”转换你的选择对你来说是一种优势吗?”

二、问题简化

定义:
Y为事件:门后面有车
X为事件:选择一个门
Z为事件:主持人打开一扇门
1号门:A;2号门:B; 3号门:C;

这时候能将问题描述为下述符号:
P(Y=A | X=A, Z = C) (即,你选择一号门,主持人打开三号门,那么车在一号门后面的概率)
是否大于
P(Y=B | X=A, Z =C) (即,你选择一号门,主持人打开三号门,那么车在二号门后面的概率)

三、问题解答

显然 P ( X ) = 1 / 3 P( X) = 1/3 P(X)=1/3 , P ( Y ) = 1 / 3 P(Y) = 1/3 P(Y)=1/3
因为主持人知道门后面是什么 ,所以 P(Z = “三号门”) 的概率是依据剩下两个门后面是否有车所决定的
P ( Z = C ∣ Y = A ) = 1 / 2 P(Z =C | Y= A) = 1/2 P(Z=CY=A)=1/2
P ( Z = C ∣ Y = B ) = 1 P(Z = C | Y=B) = 1 P(Z=CY=B)=1
P ( Z = C ∣ Y = C ) = 0 P(Z =C | Y= C) = 0 P(Z=CY=C)=0
P ( Z = C ) = ( 1 / 2 + 1 + 0 ) / 3 = 1 / 2 P(Z = C) = (1/2 + 1 + 0)/3 = 1/2 P(Z=C)=(1/2+1+0)/3=1/2


  • 贝叶斯公式转化
    P ( Y = A ∣ X = A , Z = C ) = P ( X = A , Z = C ∣ Y = A ) P ( Y = A ) P ( X = A , Z = C ) P(Y=A | X=A, Z = C) = \frac{P(X=A, Z = C|Y=A )P(Y=A)}{P(X=A,Z=C)} P(Y=AX=A,Z=C)=P(X=A,Z=C)P(X=A,Z=CY=A)P(Y=A)

因为:
P ( X = A , Z = C ∣ Y = A ) = P ( X = A ∣ Y = A ) ∗ P ( Z = C ∣ Y = A ) = 1 / 3 ∗ 1 / 2 = 1 / 6 P(X=A, Z = C|Y=A )=P(X=A|Y=A)*P(Z=C|Y=A)=1/3*1/2=1/6 P(X=A,Z=CY=A)=P(X=AY=A)P(Z=CY=A)=1/31/2=1/6

P ( X = A , Z = C ) = P ( X = A ) ∗ P ( Z = C ) = 1 / 3 ∗ 1 / 2 = 1 / 6 P(X=A,Z=C)=P(X=A)*P(Z=C)=1/3*1/2=1/6 P(X=A,Z=C)=P(X=A)P(Z=C)=1/31/2=1/6

所以:
P ( Y = A ∣ X = A , Z = C ) = 1 / 6 ∗ 1 / 3 1 / 6 = 1 / 3 P(Y=A | X=A, Z = C) = \frac{1/6*1/3}{1/6}=1/3 P(Y=AX=A,Z=C)=1/61/61/3=1/3


  • 贝叶斯公式转化
    P ( Y = B ∣ X = A , Z = C ) = P ( X = A , Z = C ∣ Y = B ) P ( Y = B ) P ( X = A , Z = C ) P(Y=B | X=A, Z = C) = \frac{P(X=A, Z = C|Y=B )P(Y=B)}{P(X=A,Z=C)} P(Y=BX=A,Z=C)=P(X=A,Z=C)P(X=A,Z=CY=B)P(Y=B)

因为:
P ( X = A , Z = C ∣ Y = B ) = P ( X = A ∣ Y = B ) ∗ P ( Z = C ∣ Y = B ) = 1 / 3 ∗ 1 = 1 / 3 P(X=A, Z = C|Y=B )=P(X=A|Y=B)*P(Z=C|Y=B)=1/3*1=1/3 P(X=A,Z=CY=B)=P(X=AY=B)P(Z=CY=B)=1/31=1/3

P ( X = A , Z = C ) = P ( X = A ) ∗ P ( Z = C ) = 1 / 3 ∗ 1 / 2 = 1 / 6 P(X=A,Z=C)=P(X=A)*P(Z=C)=1/3*1/2=1/6 P(X=A,Z=C)=P(X=A)P(Z=C)=1/31/2=1/6

所以:
P ( Y = B ∣ X = A , Z = C ) = 1 / 3 ∗ 1 / 3 1 / 6 = 2 / 3 P(Y=B | X=A, Z = C) = \frac{1/3*1/3}{1/6}=2/3 P(Y=BX=A,Z=C)=1/61/31/3=2/3

结论

选择换门
因为:
P(Y=B | X=A, Z = C)=2/3 > P(Y=A | X=A, Z = C)=1/3
所以:
你选择一号门,主持人打开三号门,那么车在二号门后面的概率

这篇关于统计_三门问题:贝叶斯解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/331274

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关