统计_三门问题:贝叶斯解答

2023-11-02 14:32

本文主要是介绍统计_三门问题:贝叶斯解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、三门问题

“假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”转换你的选择对你来说是一种优势吗?”

二、问题简化

定义:
Y为事件:门后面有车
X为事件:选择一个门
Z为事件:主持人打开一扇门
1号门:A;2号门:B; 3号门:C;

这时候能将问题描述为下述符号:
P(Y=A | X=A, Z = C) (即,你选择一号门,主持人打开三号门,那么车在一号门后面的概率)
是否大于
P(Y=B | X=A, Z =C) (即,你选择一号门,主持人打开三号门,那么车在二号门后面的概率)

三、问题解答

显然 P ( X ) = 1 / 3 P( X) = 1/3 P(X)=1/3 , P ( Y ) = 1 / 3 P(Y) = 1/3 P(Y)=1/3
因为主持人知道门后面是什么 ,所以 P(Z = “三号门”) 的概率是依据剩下两个门后面是否有车所决定的
P ( Z = C ∣ Y = A ) = 1 / 2 P(Z =C | Y= A) = 1/2 P(Z=CY=A)=1/2
P ( Z = C ∣ Y = B ) = 1 P(Z = C | Y=B) = 1 P(Z=CY=B)=1
P ( Z = C ∣ Y = C ) = 0 P(Z =C | Y= C) = 0 P(Z=CY=C)=0
P ( Z = C ) = ( 1 / 2 + 1 + 0 ) / 3 = 1 / 2 P(Z = C) = (1/2 + 1 + 0)/3 = 1/2 P(Z=C)=(1/2+1+0)/3=1/2


  • 贝叶斯公式转化
    P ( Y = A ∣ X = A , Z = C ) = P ( X = A , Z = C ∣ Y = A ) P ( Y = A ) P ( X = A , Z = C ) P(Y=A | X=A, Z = C) = \frac{P(X=A, Z = C|Y=A )P(Y=A)}{P(X=A,Z=C)} P(Y=AX=A,Z=C)=P(X=A,Z=C)P(X=A,Z=CY=A)P(Y=A)

因为:
P ( X = A , Z = C ∣ Y = A ) = P ( X = A ∣ Y = A ) ∗ P ( Z = C ∣ Y = A ) = 1 / 3 ∗ 1 / 2 = 1 / 6 P(X=A, Z = C|Y=A )=P(X=A|Y=A)*P(Z=C|Y=A)=1/3*1/2=1/6 P(X=A,Z=CY=A)=P(X=AY=A)P(Z=CY=A)=1/31/2=1/6

P ( X = A , Z = C ) = P ( X = A ) ∗ P ( Z = C ) = 1 / 3 ∗ 1 / 2 = 1 / 6 P(X=A,Z=C)=P(X=A)*P(Z=C)=1/3*1/2=1/6 P(X=A,Z=C)=P(X=A)P(Z=C)=1/31/2=1/6

所以:
P ( Y = A ∣ X = A , Z = C ) = 1 / 6 ∗ 1 / 3 1 / 6 = 1 / 3 P(Y=A | X=A, Z = C) = \frac{1/6*1/3}{1/6}=1/3 P(Y=AX=A,Z=C)=1/61/61/3=1/3


  • 贝叶斯公式转化
    P ( Y = B ∣ X = A , Z = C ) = P ( X = A , Z = C ∣ Y = B ) P ( Y = B ) P ( X = A , Z = C ) P(Y=B | X=A, Z = C) = \frac{P(X=A, Z = C|Y=B )P(Y=B)}{P(X=A,Z=C)} P(Y=BX=A,Z=C)=P(X=A,Z=C)P(X=A,Z=CY=B)P(Y=B)

因为:
P ( X = A , Z = C ∣ Y = B ) = P ( X = A ∣ Y = B ) ∗ P ( Z = C ∣ Y = B ) = 1 / 3 ∗ 1 = 1 / 3 P(X=A, Z = C|Y=B )=P(X=A|Y=B)*P(Z=C|Y=B)=1/3*1=1/3 P(X=A,Z=CY=B)=P(X=AY=B)P(Z=CY=B)=1/31=1/3

P ( X = A , Z = C ) = P ( X = A ) ∗ P ( Z = C ) = 1 / 3 ∗ 1 / 2 = 1 / 6 P(X=A,Z=C)=P(X=A)*P(Z=C)=1/3*1/2=1/6 P(X=A,Z=C)=P(X=A)P(Z=C)=1/31/2=1/6

所以:
P ( Y = B ∣ X = A , Z = C ) = 1 / 3 ∗ 1 / 3 1 / 6 = 2 / 3 P(Y=B | X=A, Z = C) = \frac{1/3*1/3}{1/6}=2/3 P(Y=BX=A,Z=C)=1/61/31/3=2/3

结论

选择换门
因为:
P(Y=B | X=A, Z = C)=2/3 > P(Y=A | X=A, Z = C)=1/3
所以:
你选择一号门,主持人打开三号门,那么车在二号门后面的概率

这篇关于统计_三门问题:贝叶斯解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/331274

相关文章

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F