首发 | FOSS分布式全闪对象存储系统白皮书

2023-11-02 08:21

本文主要是介绍首发 | FOSS分布式全闪对象存储系统白皮书,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 产品概述

1. 当前存储的挑战  

随着云计算、物联网、5G、大数据、人工智能等新技术的飞速发展,数据呈现爆发式增长,预计到2025年中国数据量将增长到48.6ZB,超过80%为非结构化数据。

同时,数字经济正在成为我国经济发展的新引擎,数据已经成为企业的核心生产要素,数据即价值。新技术新应用不断产生急剧增长的海量数据,数据的价值越来越高,对存储系统的可靠性、安全性、可用性、性能、成本、运维的要求也越来越高,给存储系统提出了巨大的挑战:

图片

以上挑战和刚需说明,新一代存储系统不光要面向传统的数据可靠性、服务可用性、性能等维度,超大存储量、长期存储经济性、系统水平线性扩展性、可交付的运维等维度成为新的重点。

这驱使新一代存储系统必然走向规模化、集成化、存算分离的分布式scale-out云存储架构,提供可交付的简洁易用的运维平台,让客户自己负责运维,安心使用。

2. FOSS的特点  

大道云行对象存储FOSS,是采用先进的分布式全闪架构的信创云存储系统,设计为超大规模数据长期、可靠、绿色节能、高性能存取。

FOSS适用于包括广电媒资、备份归档、远程容灾、视频监控、人工智能、大数据分析、数据湖等大规模非结构化数据存取应用场景,特别是数据量大、吞吐高,成本敏感的需求。

FOSS特点详解

Share Everything架构 

存储后端网络share everything架构,支持NVMe-oF,支持分布式无状态微服务安全访问存储。

信创存储 

全自主知识产权国产分布式全闪存储软件和国产闪存的结合。

全闪架构,超高性能,数据量,性能的水平线性扩展 

亚毫秒级延迟,单zone-百PB级空间,百GB级吞吐,百万级IOPS。

绿色节能 

节能调度算法使得多数SSD的大部分时间处于低功耗状态(单片SSD<0.5w)。

全闪优化设计使得SSD使用时间长,成本低 

数据按时间聚合,采用全域GC和磨损平衡等设计,极大降低SSD写放大,提高SSD使用寿命。实现大尺度QLC SSD的高密度使用,降低单位成本。

长期可靠

数据静默错误保护;智能化的介质和数据的巡检、健康扫描、Rebuild恢复。

对数据和介质长期可靠做了慎密的数据保护、监测、扫描、恢复、迁移等运维规划。

3. FOSS的核心能力  

在线数据的性能和延迟,离线数据的规模和成本。

使用FOSS,意味着客户可以将大部分数据以离线数据的成本保存到在线系统,数据长久在线。

二、 产品架构

1. 网络架构  

图片

系统采用扁平的二层网络,易于部署和管理,支持对存储集群节点进行分组,支持跨组数据互访。

  • 业务网

业务网可以是IP/IB/RoCE;

每组业务网的计算节点都互通。

  • 存储后端网

存储后端网可以是IP/IB/RoCE;

存储后端网支持按分组进行扩展,不同分组之间存储网不通,可以通过业务网进行转发;

分组设计有利于存储网络简单的水平扩展,而不增加组网的复杂度。

一个zone规模的上限,取决于业务网的规模,即计算节点总数;存储网可任意水平扩展,但总规模会受限于连接存储网的计算节点总数。

一般的,一个zone支持100GB的业务网,200个计算节点,20个存储网分组(每分组10P存储空间);则整个zone支持100GB带宽,200PB存储空间。

2. 软件架构  

图片

协议层

对外提供s3服务和nas服务。

缓存层 

数据分片通过读缓存层降低延迟,满足低读延迟的场景需求。

开放介质存储层 

-- volume

开放介质存储(OpenMediaStorage - OMS)层将块设备(disk)的trunk封装为跨节点的、冗余算法(纠删/副本)保护的volume,提供volume的装配、分配和读写接口。

OMS层开放式的直接存取disk,支持:主机Local_disk、SAS/NVMe-oF enclosure disk、块存储系统的LUN(FC/iSCSI/NVMe-oF)。

-- volume_group

volume按分组进行管理、调度和使用。分组用于支持多租户。

volume_group由调度器和node集群组成。

-- node

node代表了挂载的disk的集合,对应实体存储节点主机disk组,或NVMe-oF 盘柜disk组,或块存储划分的Lun组。

node作为disk的IO控制器,提供发现、挂载、访问disk的接口。

-- 调度器负责volume装配和分配

装配:

- 按node类型树进行类型分组

- 按空间平衡+擦写次数平衡选择node

分配:

- 按类型聚合

- 数据分片MVCC+基于租约的volume_range保护机制

元数据 

mds集群提供分布式元数据服务,支持最终一致性事务,在线线性扩展。

任务层 

包含GC、Disk_Rebuild、数据迁移、数据均衡、数据/介质健康扫描、生命周期、配额、计量归并等任务。

任务通过管理器Task_mgr,分发到Task_agent分布式并行执行。

task_mgr进行任务策略配置、调度、资源使用控制。

Service_mgr 

服务部署、升级、配置,单例服务故障转移,集群服务扩展等。

三、产品特性

1. 分布式元数据  

很多存储系统采用无元数据服务架构,比如一致性Hash。无元数据服务架构在超大规模分布式系统中存在许多缺点:

  • 无法在统一的逻辑上管理元数据,不支持事务,会导致很多一致性问题。

  • 没有元数据的范围查询能力,查询范围会放大到整个集群,导致海量对象场景下元数据列举开销大性能差。

  • rebalance过程复杂,要扫描所有需rebalance的数据进行处理并完成状态转换,且网络故障、节点临时离线和永久离线等会进一步增加rebalance复杂度。

FOSS采用分布式元数据服务架构:

  • 元数据服务线性平滑,网络故障和节点故障不影响服务的可用性

  • 元数据三副本冗余

  • 支持热点消除(主键单调递增的元数据,采用shard_bit打散)

  • 支持高性能的事务聚合批处理(batch和scan)

  • 低延迟(亚毫秒级)

依靠分布式元数据服务,FOSS简洁高效的实现了单桶无限数量对象、快速对象列举、volume调度、全域GC和磨损平衡等高级功能。

2. 存储冷热分层  

FOSS存储分层设计的主旨,是为了同时满足超高性能和超大容量需求。FOSS的数据存储包括2层:

(热)高性能层 

- 热volume_group

- 读缓存集群

高性能层满足要求极低延迟的高性能场景。高并发写入通过写请求聚合提高IOPS;小文件的低延迟读取,通过热数据读缓存优化。

通常,变冷的数据会迁移到大容量层。只需要高性能层的特例客户,也可以独立使用高性能层,不部署大容量层。

(冷)大容量层

- 冷volume_group

大容量层必须依赖高性能层存在。tier_migrate任务将高性能层的数据批量迁移到冷volume 。

批量迁移采用顺序大IO写入,使大尺度SSD可以得到优化使用。

3. 资源多租户  

S3服务资源多租户 

通过service_mgr配置租户独占的S3服务资源,为特定租户建立专属的s3_serv_group 。

通过service_mgr配置s3_serv_group和volume_group的映射关系。

存储资源多租户

bucket可以代表租户的分类存储空间,多租户的空间管理通过bucket的存储策略进行。

支持设置bucket的数据放置策略(对应的volume_group),比如可指定bucket放置到特定性能分类(SSD|HDD)的volume 。

4. 优秀的扩展性  

FOSS支持容量和性能的横向线性扩展,元数据的横向线性扩展,通过分布式元数据服务mds实现:

  • mds_kv集群的扩展

    mds_kv采用全局字典序range方式进行key的sharding;支持在线增加kv节点,IOPS随kv节点个数线性增长。

  • mds事务服务集群的扩展

    mds事务服务集群,采用配置订阅方式扩展;支持在线增加事务服务,IOPS随事务服务个数线性增长。

数据存储的横向线性扩展,通过开放介质存储(OpenMediaStorage-OMS)层实现:

  • 存算分离的架构下,数据存储的横向扩展简化为存储后端网的横向扩展。

  • 存储后端网按分组进行水平扩展,每个分组后端网独立组网,扩展简单。

    增加volume_group中node,即增加了分组的存储量和IOPS;当volume_group内的扩展到达上限后,可以通过新建volume_group进行扩展。

5. 绿色节能  

FOSS通过数据写入volume分配算法和分类聚合算法,实现(冷)数据层的disk节能。

 volume分配算法

数据写入分配volume时,在满足性能吞吐需求的条件下,一段时间内分配的volume使用尽量少的同一批disk。(其他disk这段时间处于节能状态,存储规模越大,节能比例越高)

 分类聚合算法

应用按时间批量读取数据的时候,因为应用写入数据按时间聚合,读关联的disk和写入时是相同的,同样只是少数的一批disk。

四、产品愿景

以全闪绿色节能信创存储的创新技术:

为客户提供自运维的私有云存储,应存尽存;

在企业存储领域促进国产SSD对进口HDD的替代;

作为智能云平台的存储底座,助力数据处理的智能化,发掘数据的真正价值。

《FOSS全闪对象存储技术白皮书》详见官网大道云行 TaoCloud - 新一代全闪软件定义存储领导者 (taocloudx.com)

这篇关于首发 | FOSS分布式全闪对象存储系统白皮书的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329327

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

Eureka高可用注册中心registered-replicas没有分布式注册中心

自己在学习过程中发现,如果Eureka挂掉了,其他的Client就跑不起来了,那既然是商业项目,还是要处理好这个问题,所以决定用《Spring Cloud微服务实战》(PDF版在全栈技术交流群中自行获取)中说的“高可用注册中心”。 一开始我yml的配置是这样的 server:port: 8761eureka:instance:hostname: 127.0.0.1client:fetch-r

API-环境对象

学习目标: 掌握环境对象 学习内容: 环境对象作用 环境对象: 指的是函数内部特殊的变量this,它代表着当前函数运行时所处的环境。 作用: 弄清楚this的指向,可以让我们代码更简洁。 函数的调用方式不同,this指代的对象也不同。【谁调用,this就是谁】是判断this指向的粗略规则。直接调用函数,其实相当于是window.函数,所以this指代window。

Python分解多重列表对象,isinstance实现

“”“待打印的字符串列表:['ft','bt',['ad',['bm','dz','rc'],'mzd']]分析可知,该列表内既有字符对象,又有列表对象(Python允许列表对象不一致)现将所有字符依次打印并组成新的列表”“”a=['ft','bt',['ad',['bm','dz','rc'],'mzd']]x=[]def func(y):for i in y:if isinst

[分布式网络通讯框架]----Zookeeper客户端基本操作----ls、get、create、set、delete

Zookeeper数据结构 zk客户端常用命令 进入客户端 在bin目录下输入./zkCli.sh 查看根目录下数据ls / 注意:要查看哪一个节点,必须把路径写全 查看节点数据信息 get /第一行代码数据,没有的话表示没有数据 创建节点create /sl 20 /sl为节点的路径,20为节点的数据 注意,不能跨越创建,也就是说,创建sl2的时候,必须确保sl

[分布式网络通讯框架]----ZooKeeper下载以及Linux环境下安装与单机模式部署(附带每一步截图)

首先进入apache官网 点击中间的see all Projects->Project List菜单项进入页面 找到zookeeper,进入 在Zookeeper主页的顶部点击菜单Project->Releases,进入Zookeeper发布版本信息页面,如下图: 找到需要下载的版本 进行下载既可,这里我已经下载过3.4.10,所以以下使用3.4.10进行演示其他的步骤。

分布式事务的解决方案(一)

前言应用场景 事务必须满足传统事务的特性,即原子性,一致性,分离性和持久性。但是分布式事务处理过程中, 某些场地比如在电商系统中,当有用户下单后,除了在订单表插入一条记录外,对应商品表的这个商品数量必须减1吧,怎么保证? 在搜索广告系统中,当用户点击某广告后,除了在点击事件表中增加一条记录外, 还得去商家账户表中找到这个商家并扣除广告费吧,怎么保证? 一 本地事务 以用户A

Java面试题:内存管理、类加载机制、对象生命周期及性能优化

1. 说一下 JVM 的主要组成部分及其作用? JVM包含两个子系统和两个组件:Class loader(类装载)、Execution engine(执行引擎)、Runtime data area(运行时数据区)、Native Interface(本地接口)。 Class loader(类装载):根据给定的全限定名类名(如:java.lang.Object)装载class文件到Runtim

分布式锁实现方案-基于Redis实现的分布式锁

目录 一、基于Lua+看门狗实现 1.1 缓存实体 1.2 延迟队列存储实体 1.3 分布式锁RedisDistributedLockWithDog 1.4 看门狗线程续期 1.5 测试类 1.6 测试结果 1.7 总结 二、RedLock分布式锁 2.1 Redlock分布式锁简介 2.2 RedLock测试例子 2.3 RedLock 加锁核心源码分析 2.4

分布式,容错:10台电脑坏了2台

由10台电脑组成的分布式系统,随机、任意坏了2台,剩下的8台电脑仍然储存着全部信息,可以继续服务。这是怎么做到的? 设N台电脑,坏了H台,要保证上述性质,需要有冗余,总的存储量降低为1/(H+1)。例如: H=1,随机坏1台,总容量变为1/2; H=2,随机坏2台,总容量变为1/3; 特别地,H=0,总容量不变; H=N-1,总容量变为1/N,这时,每台电脑都储存着全部信息,保证任意坏了N-1台