英飞凌TC3xx-Overlay

2023-11-02 05:20
文章标签 overlay 英飞凌 tc3xx

本文主要是介绍英飞凌TC3xx-Overlay,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.数据访问重定向

2.寄存器说明

3.Overlay功能配置

3.1 确认用于重定向的CPU

3.2 配置重定向Block大小

3.3 配置目标地址和重定向地址

4.结果验证

5.小结


        今天说要开个专栏讲讲XCP标定,但在将标定之前,先把英飞凌专门为标定功能设计overlay功能讲解清楚。                

        英飞凌的overlay全称叫做Data Access Overlay,其作用是 redirect selected data access to the OVERLAY memory(意味着通过overlay memory来访问数据?)对于Trcicore系列来说,通过CPU访问PFlash、Online Data Acquisition space或者EBU可以被重定向;OVERLAY memory可以分配到Local memory、Emulation Memory或者DPSR/PSPR。

        Overlay功能可以在程序运行时在线实时修改标定参数(这些参数通常存放在Flash中)。注意,overlay仅对数据访问有效;且Overlay机制是针对CPU对数据的访问重定向,一定要注意这点。

1.数据访问重定向

        我们首先来看overlay原理图。

对于一个overlay block有三个非常重要的参数:

  1. Target Base Address --需要被重定向的目标起始地址(一般为Flash);
  2. Block Size -- 需要被重定向的块大小;
  3. Redirection Base Address -- 重定向块的起始地址(一般为RAM);

对于这三个参数,都有相应的寄存器来配置:

  1. Target Base Address -- OTARx;
  2. Block Size  -- OMASKx;
  3. Redirection Base Address -- RABRx

根据芯片手册,TC3xx有32个block用于overlay功能,且size可配置(32byte~128KB)。

2.寄存器说明

  • OTARx(i=0-31)

        该寄存器只有一个参数可配置,TBASE;

        该参数的有效性受OMASK寄存器控制;而所谓target base是指的源地址(通俗将即flash地址,这容易混淆)

  • OMASKi(i=0~31)

        OMASK位域用于设置overlay block size。

        需要注意是,OMASK 只有当bit设置为0时才会参与block大小的配置,例如,当OMASK配置为000时,也即全部12bit有效,因此block size = 2^12 * 32 = 131082byte = 128KB;那么当我需要配置1024byte时,2^n*32 = 1024 ,n= 5,OMASK = 1111 1110 0000 = 0xFE0;

        当bit为1时,OMASK中置1 的位用于地址比较。

  • RABRi(i= 0~31)

        OVEN--Overlay 使能

        OMEM -- 选取overlay memory

        OBASE -- Overlay memory基地址

         看到这里我想大家明白我说TBASE容易搞混淆的原因,按正常想法,我们都是从源地址overlay到目标地址,即访问flash但实际访问到的是ram;英飞凌不一样,他说目标地址overlay到overlay memory。

  • OVCENABLE

        这个寄存器用于使能核的overlay功能,所以大家这里就要搞明白,为什么overlay是放在CPU这一章节;后面我会做一个验证,通过debug口看到的数据和开启overlay的cpu看到的数据其实是不一样的。

  • OVCCON

        Overlay control register,用于控制某个核的overlay功能

CSELx -- 用于选择某个核使能overlay

OVSTRT -- 如果CPU选择了overlay,那么OVCx_OSEL选择的block会被激活;

OVSTP -- 对于CSEL选择的CPU,所有的overlay block会被失效;OVCx_RABRy.OVEN会被清除。

OVCONF -- overlay configured;置1,overlay block control寄存器已经配置好,并且已经为overlay start做好准备。

DCINVAL -- Data Cache Invalidate ;Data Cache Lines使能。

3.Overlay功能配置

        有了上述寄存器认识后,下面来看寄存器配置是如何实现重定向功能:

        假设我们现在想把PFlash0(0x8000 1000)(128byte)重定向到CPU0DSPR,那么我们要考虑三个关键因素,目标地址、映射block大小、重定向地址;

        很明显:目标地址即要重定向的flash地址:0x80001000(提问:可不可以不指定地址,让编译器随意分配地址?)

        Block大小:128byte即可;

        重定向地址:CPU0DSPR 0x70011000

        那么如何来配置寄存器呢?

3.1 确认用于重定向的CPU

        根据datasheet,通过核访问PFlash等可以被重定向;所以这里我们选择CPU0开启overlay功能。

        OVCCON.CSEL0 = 1,因为每个CPU都有至少32个可重定向的block,因此这里我们选取block0用于定向到CPU0DSPR,CPU0_OSEL.SHOVEN0=1

3.2 配置重定向Block大小

        Block大小为128byte,那么根据芯片手册,配置为0的为有效位,因此根据公式计算2^n * 32 = 128 ,得出n=2,也即OMASK 位域 = 0x 1111 1111 1100 (0xFFC)

OMASKi.OMASK = 0xFFC,OMASK.U = 0x0FFFFF800

3.3 配置目标地址和重定向地址

        目标地址寄存器为OTAR,重定向寄存器为RABR,该寄存器配置的难点在于:RABR.OBASE仅有17bit,OTAR.TBASE仅有23bit,如何把目标地址和重定向地址放进去?就需要参考下图:

        再来回顾 PF地址0x80001000,DSPR 0x70011000,OMASK 0x0FFFF800。

        首先我们来看,Destination有两种来源,一种是Original Address,一种是redirected;那么根据实际情况来看,什么时候选择原始地址,什么时候选择重定向地址,很明显要看左边比较的结果。

        根据芯片手册,需要A和TBASE所有参与比较的bit都相同,才会使用重映射地址;参考下图:

        源地址绿色部分(bit27:bit7)会参与地址比较,也即OTAR要装绿色部分一样的数据才会使用重映射地址;很明显,要比较的位域位置一样,因此要填到TBASE的值就为Target >> 5。

        OTAR - 0x00001000

        那么RABR寄存器该如何配置;

        我们知道,要定向的ram地址为0x70011000 = Base1+Base2+offset

        其中Base1 = b1000 0000 00,Offset = b00000

        很明显,需要把绿色部分填进OBASE,因此也是重定向地址 >>5,

        故RABR = 0x80011000

        配置完成后,来看结果

4.结果验证

        Overlay是针对CPU的,由于debug是走bypass功能,因此如果直接去memory看overlay flash值,必定还是原flash的值。因此在代码上做如下工作:

        首先在0x70011000 定义一个数组Test_Map_Cal_Ram,值如下:

        在0x80001000(flash)定义一个数组Test_Map_Cal_Flash,值如下:

        为了验证overlay功能,还需要一个中间变量来承接,定为Test_Algo_Update = 0;

上电时,我们首先看Test_Algo_Update,此时应该为0

Flash值为:

Ram值为:

现在开启overlay功能,

        要达到的效果为:通过cpu0读取flash的值,但实际上应该读的是ram的值,如下

        Debug看,确实是通过访问flash实际读取的ram的值

        从上图就可以看出,CPU0把数组Test_Map_Cal_Flash赋给了数组Update,如果overlay功能没有奏效,那这个时候应该Update  = {0,1,2,3....};

        但实际上我们可以看到Update = {20,21,22....},说明CPU0是把Cal_Ram的值赋给了Update,overlay奏效了。

5.小结

        通过上面验证,我们就可以用这个功能来做标定啦;标定量A存在PFlash地址0x80004000,使用overlay时,上位机就直接download 该变量的flash地址即可完成标定,不用再做flash和ram的映射了,特别是当有多块标定数据要做标定时,这个功能简直丝滑。

这篇关于英飞凌TC3xx-Overlay的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328402

相关文章

新路程------英飞凌imx6的lvds驱动

最近拿到一块开发版,打算在lvds上做些小修改,之前也接触过一点驱动,但是现在的驱动框架看起来和之前的有点差异。 关于lcd的参数信息请参考这篇文章 http://blog.csdn.net/longxiaowu/article/details/24319933  lvds的驱动在framebuffer驱动之下,也就是上层应用只知道有个framebuffer设备也就是dev/fb,而至于下

解决移动端使用Vant van-overlay 遮罩层导致的弹窗不可滚动问题

项目场景 在游戏门户网站需要根据弹出层列举出自己背包的饰品,然后进行选择置换。 问题描述 例如:在PC端的时候能物品过多的时候能正常左右滚动,而且启用Google的开发者工具进行查看的时候也是能正常滚动,但是在手机端访问的时候手指却怎么也滑不动。 原因分析 因为遍历,事件冒泡导致不可以手指滑动van-overlay 阻止了滚动时间。 解决方案 van-overlay 设置

Android 启动时判断overlay fs是否挂载

一、背景 Android新版本使用super分区替代原来的system、vendor后,就采用了overlayfs文件系统。这种文件系统在执行adb remount 后,修改system 、vendor分区内容并不是真正存储在原来的位置,而是单独利用super剩余空间或data分区存了一份新的,原来的文件并没有改变。系统使用时判断有overlay的就用新的,没有就是有原文件。具体概念可查看htt

WiFi/BLE芯片(1):英飞凌

前言: 大部分客户很少直接接触到WiFi/Bluetooth的芯片,一般是直接封装到了模块中,隔了一层。具体到芯片而言,WiFi/BLE芯片,芯片厂家有:Qualcomm高通、broadcom博通、Infineon英飞凌、Nordic诺迪科、Espressof乐鑫等。而英飞凌这块产品也是很丰富的,低功耗、距离等性能指标方面做的不错。 英飞凌AIROC蓝牙芯片RoadMap:

Android device/xxx/system/common/overlay编译产物

MTK 如下代码编译的产物在 framework-res.apk 编译配置文件在device/mediatek/system/common/目录下的Android.bp device/mediatek/system/common/overlay/telephony/frameworks/base/core/res/res/values-mcc655-mnc01/config.xml 在

20.Dcoker跨宿主机容器通信之overlay

Dcoker跨宿主机容器通信之overlay http://www.cnblogs.com/CloudMan6/p/7270551.html 环境准备,三台机器,主机名为docker01(192.168.111.11)、docker02(192.168.111.12)、docker03(192.168.111.13) voerlay将所有docker环境的主机(IP)地址进行集中管理IP分配情况

TC3xx A\B SWAP机制的小细节(2)

目录 1.引入 2.TC3xx Swap机制小细节 3.小结 1.引入 上文TC3xx A\B SWAP机制的小细节(1)-CSDN博客主要把OTA的概念,以及MCU的硬件A\B Swap机制做了简单介绍,下面我们来聊聊TC3xx的SWAP机制 2.TC3xx Swap机制小细节 英飞凌TC3xx提供了硬件SOTA机制,它可以实现代码在一个Flash Bank读取并运行,同时

关于物联网安全 NXP、ST、英飞凌等大佬怎么说?

2016年度慕尼黑电子展CEO论坛邀请了多家欧洲半导体大厂的执行长,共同讨论如何确保物联网安全性的话题…   每年德国慕尼黑电子展(Electronica)都会举行的CEO论坛,从两年前就持续谈同一个主题:物联网(IoT),但是今年终于尝试阐明如何确保其安全性。   论坛主持人Kilian Reichert在开场时指出,不久前曾发生一场全球性的分布式阻断服务(distributed denia

Lab06 Overlay配置

Lab06 Overlay配置 采用BGP-EVPN分布式网关,AS号为100,BGP使用, BGP使用loo1建立邻居,loo0作为VETP地址建立Vxlan隧道 Leaf3的EVPN已经配置好,无需考试配置。 使用最简化的配置方式实现leaf之间全互联。 Spine1 loopback1 11.1.1.1 loopback0 10.45.45.45 0000-5e00-0100 Spine

Overlay之VXLAN架构

一、 传统网络面临的问题 随着企业业务的快速扩展需求,IT做为基础设施,快速部署和减少投入成为主要需求,云计算可以提供可用的、便捷的、按需的资源提供,成为当前企业IT建设的常规形态,而在云计算中大量采用和部署的虚拟化几乎成为一个基本的技术模式。部署虚拟机需要在网络中无限制地迁移到目的物理位置,虚机增长的快速性以及虚机迁移成为一个常态性业务。传统的网络已经不能很好满足企业的这种需求。 传统网络架