通俗易懂的树状数组详解!请食用!qwq

2023-11-01 23:08

本文主要是介绍通俗易懂的树状数组详解!请食用!qwq,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前:我写的线段树深受好评。于是想写树状数组。持续更新。

树状数组与二进制位有关。和线段树有些相像之处,都是把序列转化成一棵树进行操作。但是有区别。

update 2021.1.3:发现咕了接近2个月,决定写写

part 1 :基本思想

1 二进制分解

如果1个数 a a a 的二进制表示中,为1的为分别为:
a k , 1 , a k , 2 , a k , 3 . . . a k , c n t a_{k,1},a_{k,2},a_{k,3}...a_{k,cnt} ak,1,ak,2,ak,3...ak,cnt

则这个数=
2 k , 1 + 2 k , 2 . . . + 2 k , c n t 2^{k,1}+2^{k,2}...+2^{k,cnt} 2k,1+2k,2...+2k,cnt

这就是二进制分解了。

2 树的由来

我们假设 k 1 > k 2 > k 3 . . . > k c n t k_1>k_2>k_3...>k_{cnt} k1>k2>k3...>kcnt,则区间 [ 1 , n ] [1,n] [1,n] 可以被分成 O ( l o g n ) O(log n) O(logn) 个小区间。

它们分别为:
[ 1 , 2 k 1 ] , [ 2 k 1 + 1 , 2 k 1 + 2 k 2 ] . . . [1,2^{k_1}],[2^{k_1}+1,2^{k_1}+2^{k_2}]... [1,2k1],[2k1+1,2k1+2k2]...

于是有了一棵树。

3 小区间特点

如果区间结尾为 r r r,则区间长度就等于 r r r 的二进制分解中最小的2的次幂。我们用函数 l o w b i t lowbit lowbit来求区间长度。

int lowbit(int x){return x & -x;}

有了这个函数,我们就可以用类似标记的整块修改维护前缀和啦!!!

4 树的性质

我们用数组 s u m [ x ] sum[x] sum[x] 来保存序列 a a a 的区间 [ x − l o w b i t ( x ) + 1 , x ] [x-lowbit(x)+1,x] [xlowbit(x)+1,x] 中所有数的和,则数组 s u m sum sum 就是一个树形结构。

这就是我们的树状数组啦!

图解:

图中红色节点忽略不计qwq

在这个结构中:

1.每个节点保存以它为根的子树中所有叶节点的和

2.每个节点 s u m [ x ] sum[x] sum[x] 的子节点(指最底层的叶子结点!)个数等于 l o w b i t ( x ) lowbit(x) lowbit(x) 的值。

笔者的书本上没有括号内容,然而我经过研究后发现,是指叶子结点的值。如4有1.2.3.4这4个叶子结点,对吧?所以 l o w b i t ( 4 ) = 4 lowbit(4)=4 lowbit(4)=4 。但是4有7个子节点(A4个,C3个)。

3.除了根节点,每个节点 s u m [ x ] sum[x] sum[x] 的父亲节点是 s u m [ x + l o w b i t ( x ) ] sum[x+lowbit(x)] sum[x+lowbit(x)]

4.一整颗树的深度为 O ( l o g N ) O(log N) O(logN)

基本思想讲完了!

part 2 :常支持的操作

树状数组资瓷查询前缀和(自然可以区间和啦!),单点修改,求逆序对(和正序对),区间修改等。

好的,下一部分qwq。

part 3 :代码

像这种数据结构(线段树,分块…)基本都有整体修改的标记,对吧qwq?

前缀和:

遍历一个节点的子树中的子节点,就可以了。

int ask(int x){int res=0;for(;x;x-=lowbit(x))res+=sum[x];return res;
} 

单点修改:

这个操作除了修改,还要维护前缀和,所以我们要对一个节点的祖先进行遍历,从下往上修改。这样子修改完,前缀和一定也是正确维护的。

void add(int x,int val){for(;x<=n;x+=lowbit(x))sum[x]+=val;
}//n为原始数列中元素个数 

区间修改:

我们新建一个数组 b b b,把一次区间修改(在区间 [ l , r ] [l,r] [l,r] 中,把每一个值加上 v a l val val)转化为:

b [ l ] b[l] b[l] 处加上 v a l val val,在 b [ r + 1 ] b[r+1] b[r+1] 处减去 v a l val val

原理是前缀和。在区间 [ 1 , l − 1 ] [1,l-1] [1,l1] 中,前缀和不变;在区间 [ l , r ] [l,r] [l,r] 中,前缀和增加了 v a l val val;在区间 [ r + 1 , n ] [r+1,n] [r+1,n] 中,前缀和不变(加 v a l val val 和减去 v a l val val 抵消)。

正确性使然。

这里的加是指单点修改。

不要直接 s u m [ x ] + = v a l sum[x]+=val sum[x]+=val,会气死我的

区间和(区间查询):

这种题的区间修改和上面类似,但是要改一下,因为还要执行区间和操作。我们使用两个树状数组 c 1 c1 c1 c 2 c2 c2

它们初始值为0。

对于修改区间 [ l , r ] [l,r] [l,r],我们执行四次操作:

c 1 c1 c1 中,add(l,val);add(r+1,-val);

c 2 c2 c2 中,add(l,l*val);add(r+1,-(r+1)*val);

我们还要用 一个 数组储存数列原本的前缀和。

下面,对于每一个区间查询,我们分成1到 r r r 和1到 l − 1 l-1 l1两个部分,查询结果就是二者相减。

int ask_lr(int l,int r){int ans=sum[r]+(r+1)*ask_c1(r)-ask_c2(r);ans-=(sum[l-1]+l*ask_c1(l-1)-ask_c2(l-1));return ans;
} //ask_c1是对c1的操作,ask_c2是对c2的操作,sum记录原始前缀和

这个式子好好理解下吧!

讲完啦!(注意:根据不同的题目,大部分时候请开long long)

part 4 :练习题

一个比较不错的题单,做做吧

结:

写了怎么久,终于写完啦!

谢谢阅读。

这篇关于通俗易懂的树状数组详解!请食用!qwq的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326398

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML