SS-nbt和FCB模块实现

2023-11-01 11:10
文章标签 模块 实现 nbt ss fcb

本文主要是介绍SS-nbt和FCB模块实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 前言
    • LEDNet中的SS-nbt模块
    • LRNNET中的FCB模块

前言

在这里插入图片描述
论文链接:LRNNET - 轻量级实时语义分割算法
在这里插入图片描述

LEDNet中的SS-nbt模块

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
def Split(x):c = int(x.size()[1])c1 = round(c * 0.5)x1 = x[:, :c1, :, :].contiguous()x2 = x[:, c1:, :, :].contiguous()return x1, x2 def Merge(x1,x2):return torch.cat((x1,x2),1) def Channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groups#reshapex = x.view(batchsize, groups,channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()#flattenx = x.view(batchsize, -1, height,width)return xclass SS_nbt_module(nn.Module):def __init__(self, chann, dropprob, dilated):        super().__init__()oup_inc = chann//2#dwself.conv3x1_1_l = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_l = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_l = nn.BatchNorm2d(oup_inc, eps=1e-03)self.conv3x1_2_l = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1*dilated,0), bias=True, dilation = (dilated,1))self.conv1x3_2_l = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1*dilated), bias=True, dilation = (1,dilated))self.bn2_l = nn.BatchNorm2d(oup_inc, eps=1e-03)#dwself.conv3x1_1_r = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_r = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_r = nn.BatchNorm2d(oup_inc, eps=1e-03)self.conv3x1_2_r = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1*dilated,0), bias=True, dilation = (dilated,1))self.conv1x3_2_r = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1*dilated), bias=True, dilation = (1,dilated))self.bn2_r = nn.BatchNorm2d(oup_inc, eps=1e-03)       self.relu = nn.ReLU(inplace=True)self.dropout = nn.Dropout2d(dropprob)# self.channel_shuffle = PermutationBlock(2)def forward(self, x):residual = xx1, x2 = Split(x)output1 = self.conv3x1_1_l(x1)output1 = self.relu(output1)output1 = self.conv1x3_1_l(output1)output1 = self.bn1_l(output1)output1_mid = self.relu(output1)output2 = self.conv1x3_1_r(x2)output2 = self.relu(output2)output2 = self.conv3x1_1_r(output2)output2 = self.bn1_r(output2)output2_mid = self.relu(output2)output1 = self.conv3x1_2_l(output1_mid)output1 = self.relu(output1)output1 = self.conv1x3_2_l(output1)output1 = self.bn2_l(output1)output2 = self.conv1x3_2_r(output2_mid)output2 = self.relu(output2)output2 = self.conv3x1_2_r(output2)output2 = self.bn2_r(output2)if (self.dropout.p != 0):output1 = self.dropout(output1)output2 = self.dropout(output2)out = Merge(output1, output2)out = F.relu(residual + out)# out = self.channel_shuffle(out)   ### channel shuffleout = Channel_shuffle(out, 2)   ### channel shufflereturn out# return    ### channel shuffle
if __name__ == '__main__':ss_nbt = SS_nbt_module(256, 0.2, 6).cuda()input = torch.randn([1, 256, 14, 14]).cuda()y = ss_nbt(input)print(y.shape)

LRNNET中的FCB模块

import torch
import torch.nn as nn
import torch.nn.functional as F
def Split(x):c = int(x.size()[1])c1 = round(c * 0.5)x1 = x[:, :c1, :, :].contiguous()x2 = x[:, c1:, :, :].contiguous()return x1, x2 def Merge(x1,x2):return torch.cat((x1,x2),1) def Channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groups#reshapex = x.view(batchsize, groups,channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()#flattenx = x.view(batchsize, -1, height,width)return xclass FCB_module(nn.Module):def __init__(self, chann, dropprob, dilated):        super().__init__()oup_inc = chann//2#dwself.conv3x1_1_l = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_l = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_l = nn.BatchNorm2d(oup_inc, eps=1e-03)#dwself.conv3x1_1_r = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_r = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_r = nn.BatchNorm2d(oup_inc, eps=1e-03)#dsself.conv3x3 = nn.Conv2d(chann, chann, (3,3), stride=1, padding=(1*dilated, 1*dilated), bias=True, dilation = (dilated, dilated))self.conv1x1 = nn.Conv2d(chann, chann, (1,1), stride=1)self.bn2 = nn.BatchNorm2d(chann, eps=1e-03)       self.relu = nn.ReLU(inplace=True)self.dropout = nn.Dropout2d(dropprob)# self.channel_shuffle = PermutationBlock(2)def forward(self, x):residual = xx1, x2 = Split(x)output1 = self.conv3x1_1_l(x1)output1 = self.relu(output1)output1 = self.conv1x3_1_l(output1)output1 = self.bn1_l(output1)output1_mid = self.relu(output1)output2 = self.conv1x3_1_r(x2)output2 = self.relu(output2)output2 = self.conv3x1_1_r(output2)output2 = self.bn1_r(output2)output2_mid = self.relu(output2)if (self.dropout.p != 0):output1_mid = self.dropout(output1_mid)output2_mid = self.dropout(output2_mid)   output = Merge(output1_mid, output2_mid)output = F.relu(output)output = self.conv3x3(output)output = self.relu(output)output = self.conv1x1(output)output = self.bn2(output)output = F.relu(residual + output)# out = self.channel_shuffle(out)   ### channel shuffleoutput = Channel_shuffle(output, 2)   ### channel shufflereturn output# return    ### channel shuffle
if __name__ == '__main__':fcb = FCB_module(256, 0.2, 6).cuda()input = torch.randn([1, 256, 14, 14]).cuda()y = fcb(input)print(y.shape)

这篇关于SS-nbt和FCB模块实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322538

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u