linux内核协议栈 协议栈收包入口 netif_receive_skb

2023-11-01 05:20

本文主要是介绍linux内核协议栈 协议栈收包入口 netif_receive_skb,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 协议栈入口 __netif_receive_skb_core()

2 vlan 操作 

2.1 vlan报文信息 struct vlan_hdr

2.2 vlan 剥离 vlan_untag()

2.3 vlan 添加 eth_type_trans()

3 三层协议处理钩子注册

3.1 各种三层协议处理函数注册过程

3.2 桥处理函数注册


网络收包流程从网卡驱动开始,一直往上,涉及NAPI、GRO、RPS等特性,通常是经过硬件中断后在经由软中断处理,在内核软中断的最后一步就是调用 netif_receive_skb 开始报文协议栈处理。

1 协议栈入口 __netif_receive_skb_core()

高版本内核(本文基于 linux-3.10.0)都会对 netif_receive_skb 函数进行了封装,一般最后都会调用 __netif_receive_skb_core 函数,主要逻辑如下:

  1. vlan报文的处理,主要是循环把vlan头剥掉,如果qinq场景,两个vlan都会被剥掉;
  2. 交给rx_handler处理,例如OVS、linux bridge 等;
  3. ptype_all处理,例如抓包程序、raw socket等;
  4. ptype_base处理,交给协议栈处理,例如ip、arp、rarp 等;
static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
{struct packet_type *ptype, *pt_prev;rx_handler_func_t *rx_handler;struct net_device *orig_dev;struct net_device *null_or_dev;bool deliver_exact = false;int ret = NET_RX_DROP;__be16 type;//记录收包时间,netdev_tstamp_prequeue为0,表示可能有包延迟net_timestamp_check(!netdev_tstamp_prequeue, skb);trace_netif_receive_skb(skb);/* if we've gotten here through NAPI, check netpoll */if (netpoll_receive_skb(skb))goto out;orig_dev = skb->dev;//记录原始收包网络设备//此时data指针是指向IP层头部的(没有vlan的情况下)//设置network_header指针 skb->network_header = skb->data - skb->head;skb_reset_network_header(skb);if (!skb_transport_header_was_set(skb))skb_reset_transport_header(skb);//设置transport_header指针,这里也是指向IP层/*设置mac_len的值为以太网报文头部长度,一般为mac_len = 14*skb->mac_len = skb->network_header - skb->mac_header;*/	skb_reset_mac_len(skb);/*指向前一个packet_type 的指针为NULL,设置此指针的目的是为了提高效率*这样相当于最后一个pt_prev 指向的函数未被执行,最后一次向上层传递时,*不需要在inc引用,回调中会free,这样相当于少调用了一次free*/pt_prev = NULL;rcu_read_lock();another_round://设置skb的skb_iif,记录数据包收包网络设备的索引号skb->skb_iif = skb->dev->ifindex;//将处理此数据包cpu的softnet_data结构统计已处理数据的字段processed加1__this_cpu_inc(softnet_data.processed);//如果报文为带vlan报文,在eth_type_trans中设置的skb->protocol 为 ETH_P_8021Q 或 ETH_P_8021ADif (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||skb->protocol == cpu_to_be16(ETH_P_8021AD)) {skb = vlan_untag(skb);//剥离vlan标签 if (unlikely(!skb))goto unlock;}#ifdef CONFIG_NET_CLS_ACTif (skb->tc_verd & TC_NCLS) {skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);goto ncls;}
#endifif (pfmemalloc)goto skip_taps;//如抓包程序未指定设备,遍历ptype_all链表,输入一份报文到ptype_all链表中的协议族,处理ETH_P_ALL类型的数据包list_for_each_entry_rcu(ptype, &ptype_all, list) {if (!ptype->dev || ptype->dev == skb->dev) {if (pt_prev)ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = ptype;}}skip_taps:
#ifdef CONFIG_NET_CLS_ACTskb = handle_ing(skb, &pt_prev, &ret, orig_dev);if (!skb)goto unlock;
ncls:
#endifif (pfmemalloc && !skb_pfmemalloc_protocol(skb))goto drop;//判断是否为vlan报文,并且vlan_tci 的VLAN_TAG_PRESENT位为1(skb_vlan_untag中进行过设置)if (vlan_tx_tag_present(skb)) {/*若pt_prev 不为空,则表示进行过ETH_P_ALL 协议类型处理,*执行刚刚链表的最后一个协议处理函数,并将pt_prev 置为NULL*/if (pt_prev) {ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = NULL;}if (vlan_do_receive(&skb))//vlan处理函数/*完成vlan处理后,改变了skb->dev,跳转到another_round重新执行*此时有一个问题:是否会重复执行ETH_P_ALL 协议处理函数,*答案:不会。因为一般会判断orig_dev和skb->dev一否一致,此时已经不一致了*/ goto another_round;else if (unlikely(!skb))goto unlock;}//若rx_handler 不为NULL,则进入桥处理,rx_handler 在br_add_if中注册的这个函数rx_handler = rcu_dereference(skb->dev->rx_handler);if (rx_handler) {/*若pt_prev 不为空,则表示进行过ETH_P_ALL 协议类型处理,*执行刚刚链表的最后一个协议处理函数,并将pt_prev 置为NULL*/if (pt_prev) {ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = NULL;}/*执行rx_handler 函数,为br_handle_frame 函数,在br_add_if中注册的这个函数*下面根据桥处理的返回值进行下一步处理*/switch (rx_handler(&skb)) {//桥已经处理该数据包,该数据包会以其他的方式传送case RX_HANDLER_CONSUMED:ret = NET_RX_SUCCESS;goto unlock;//桥改变的数据包的skb->dev,需要another_round进行再一次的处理	case RX_HANDLER_ANOTHER:goto another_round;//数据包只会传送到注册为具体网络设备(ptype->dev == skb->dev)的协议处理例程	case RX_HANDLER_EXACT:deliver_exact = true;//正常传送	case RX_HANDLER_PASS:break;default:BUG();}}if (vlan_tx_nonzero_tag_present(skb))skb->pkt_type = PACKET_OTHERHOST;/* deliver only exact match when indicated */null_or_dev = deliver_exact ? skb->dev : NULL;//记录三层的协议类型(ip、arp等)type = skb->protocol;//获取三层协议钩子函数,向上层继续处理报文list_for_each_entry_rcu(ptype,&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {if (ptype->type == type &&(ptype->dev == null_or_dev || ptype->dev == skb->dev ||ptype->dev == orig_dev)) {if (pt_prev)ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = ptype;}}/*如果pt_prev 不为空,表明上面链表处理过程中还留下最后一个协议处理函数还没有执行*此时就将这个协议处理函数传出到外层函数__netif_receive_skb_one_core调用pt_prev->func进行处理*外层函数处理时就不需要deliver_skb来增加skb->users,减少了一次skb的释放*/if (pt_prev) {if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))goto drop;elseret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);} else {
drop:atomic_long_inc(&skb->dev->rx_dropped);kfree_skb(skb);/* Jamal, now you will not able to escape explaining* me how you were going to use this. :-)*/ret = NET_RX_DROP;}unlock:rcu_read_unlock();
out:return ret;
}

2 vlan 操作 

2.1 vlan报文信息 struct vlan_hdr

/** 	struct vlan_hdr - vlan header* 	@h_vlan_TCI: priority and VLAN ID*	@h_vlan_encapsulated_proto: packet type ID or len*/
struct vlan_hdr {__be16	h_vlan_TCI;	//vlan 控制信息(2字节)__be16	h_vlan_encapsulated_proto;//报文实际协议类型(2字节)
};

前两个字节为标签协议标识TPID(Tag Protocol Identifier),值为0x8100,后
后两个字节为标签控制信息TCI(Tag Control Information),前三位Priority表明帧的优先级,接下来的一位cfi用于以太网与FDDI和令牌环网交换数据时的帧格式,最后12位VLAN ID,一共4096个

报文信息如下:

2.2 vlan 剥离 vlan_untag()

  1. 首先,判断skb = skb_share_check(skb, GFP_ATOMIC);判断skb是否共享(skb->users!=1 ?),如果共享则克隆一份,因为后续会修改skb的network_header,transport_header,vlan等信息并将原skb的引用计数-1(skb->users-1),如果不克隆则会影响共享此skb的其他函数,如果此skb为不共享,则直接返回此skb
  2. 次之,__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);设置skb->vlan_proto,skb->vlan_tci = VLAN_TAG_PRESENT | vlan_tci;记录vlan协议到vlan_proto,以及vlan控制信息到vlan_tci 并将VLAN_TAG_PRESENT位置为1
  3. 再次,vlan_set_encap_proto  设置skb->protocol 为真正的三层协议 skb_reorder_vlan_header 将vlan信息从数据包中剥离,具体做法为从2层头部到vlan域的信息整体(目的mac+源mac)向后移4字节(vlan信息长度)
  4. 最后,重置skb的 network_header,transport_header,mac_len信息
struct sk_buff *vlan_untag(struct sk_buff *skb)
{struct vlan_hdr *vhdr;u16 vlan_tci;if (unlikely(vlan_tx_tag_present(skb))) {/* vlan_tci is already set-up so leave this for another time */return skb;}skb = skb_share_check(skb, GFP_ATOMIC);if (unlikely(!skb))goto err_free;if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))goto err_free;vhdr = (struct vlan_hdr *) skb->data;vlan_tci = ntohs(vhdr->h_vlan_TCI);__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);skb_pull_rcsum(skb, VLAN_HLEN);vlan_set_encap_proto(skb, vhdr);skb = vlan_reorder_header(skb);if (unlikely(!skb))goto err_free;skb_reset_network_header(skb);skb_reset_transport_header(skb);skb_reset_mac_len(skb);return skb;err_free:kfree_skb(skb);return NULL;
}

2.3 vlan 添加 eth_type_trans()

eth_type_trans函数中,将data指针下移14字节(skb_pull_inline(skb, ETH_HLEN);),如果此时报文带vlan,vlan信息4个字节,前两个字节为标签协议标识TPID(Tag Protocol Identifier),值为0x8100,后两个字节为标签控制信息TCI(Tag Control Information),那么此时data就指向的是TCI控制信息,因为以太网源和目的mac地址12字节,加上vlan标签协议标识2字节正好14字节
在这里插入图片描述
vhdr = (struct vlan_hdr *)skb->data; 这个函数将data后的四字节数据赋给vlan_hdr,那么h_vlan_TCI就为vlan标签控制信息,h_vlan_encapsulated_proto 即为真正的以太网协议类型。后续函数vlan_set_encap_proto  会设置 skb->protocol = vhdr->h_vlan_encapsulated_proto

3 三层协议处理钩子注册

packet_type 结构作为网络层的输入接口,系统支持多种协议族,因此每个协议族都会实现一个报文处理例程,此结构的功能时在链路层和网络层之间起到了桥梁的作用,在以太网上,以太网帧到达主机后,会根据协议族的报文类型调用相应的网络层接受处理函数。结构体信息如下:

struct packet_type {//网络层数据包协议类型__be16			type;	/* This is really htons(ether_type). *///接受从指定网络设备输入的数据包,若为NULL,则表示接受全部网络设备的数据包struct net_device	*dev;	/* NULL is wildcarded here	     *///协议入口处理函数int			(*func) (struct sk_buff *,struct net_device *,struct packet_type *,struct net_device *);bool			(*id_match)(struct packet_type *ptype,struct sock *sk);void			*af_packet_priv;//存储各协议族私有数据struct list_head	list;//链接不同协议族报文接受例程的指针
};

为向上层协议递交设备驱动收到的数据包,内核提供了表结构 ptype_base 和 ptype_all,它们都是struct packet_type类型,ptype_base负责把不同类型(协议)的数据包递交给对应的上层协议模块,ptype_all表不区分包的协议类型,负责把所有数据包递交给某个注册的上层模块
在这里插入图片描述

 

3.1 各种三层协议处理函数注册过程

参见《linux内核协议栈 三 / 四层协议接收数据处理函数以及相关的全局 hash表 / 数组》

3.2 桥处理函数注册

br_handle_frame这个函数的初始注册地点是在桥添加接口的时候,注册在桥某一个接口上

int br_add_if(struct net_bridge *br, struct net_device *dev, struct netlink_ext_ack *extack)
{struct net_bridge_port *p;int err = 0;unsigned br_hr, dev_hr;bool changed_addr;...//创建一个新的桥接口 p->br = br; p->dev = dev;p = new_nbp(br, dev); ...//register receive handler,将br_handle_frame 函数注册到此桥接口上err = netdev_rx_handler_register(dev, br_handle_frame, p);...
}int netdev_rx_handler_register(struct net_device *dev,rx_handler_func_t *rx_handler,void *rx_handler_data)
{...//将net_bridge_port 赋给dev网络设备的rx_handler_datarcu_assign_pointer(dev->rx_handler_data, rx_handler_data);//将br_handle_frame 赋给dev网络设备的rx_handlerrcu_assign_pointer(dev->rx_handler, rx_handler);...
}
 

这篇关于linux内核协议栈 协议栈收包入口 netif_receive_skb的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/320760

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Linux搭建ftp服务器的步骤

《Linux搭建ftp服务器的步骤》本文给大家分享Linux搭建ftp服务器的步骤,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录ftp搭建1:下载vsftpd工具2:下载客户端工具3:进入配置文件目录vsftpd.conf配置文件4:

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更