【操作系统入门到成神系列 三】如何写出让CPU跑出更快的代码?

2023-11-01 02:40

本文主要是介绍【操作系统入门到成神系列 三】如何写出让CPU跑出更快的代码?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 👏作者简介:大家好,我是爱敲代码的小黄,独角兽企业的Java开发工程师,Java领域新星创作者。
  • 📝个人公众号:爱敲代码的小黄(回复 “技术书籍” 可获千本电子书籍)
  • 📕系列专栏:Java设计模式、数据结构和算法、Kafka从入门到成神、Kafka从成神到升仙
  • 📧如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步👀
  • 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
  • 🍂博主正在努力完成2022计划中:以梦为马,扬帆起航,2022追梦人

文章目录

    • 如何写出让CPU跑出更快的代码
      • 一、引言
      • 二、CPU Cache 有多快
      • 三、CPU Cache 的数据结构和读取过程是什么样的
        • 1. 直接映射 Cache
      • 四、如何写出让CPU跑的更快的代码
        • 1. 如何提升数据缓存的命中率
        • 2. 如何提升指令缓存的命中率
        • 3. 如何提升多核CPU的缓存命中率

如何写出让CPU跑出更快的代码

代码都是由 CPU 跑起来的,我们代码写的好与坏就决定了 CPU 的执行效率,特别是在编写计算密集型的程序,更要注重 CPU 的执行效率,否则将会大大影响系统性能。

CPU 内部嵌入了 CPU Cache(高速缓存),它的存储容量很小,但是离 CPU 核心很近。

所以缓存的读写速度是极快的,那么如果 CPU 运算时,直接从 CPU Cache 读取数据,而不是从内存的话,运算速度就会很快。

在这里插入图片描述

一、引言

本文参考 小林coding 的《图解操作系统》,也是我十分喜欢的一个公众号博主,为他打 call

老读者知道我之前再写 Kafka 的博文,为什么突然开始写操作系统的呢?

原因在于:

当我看到 Kafka 服务端的一些 IO 操作时,我发现我看不懂了,了解之后发现这里 Netty 的概念。

当我尝试了解 IO 时,我发现一些内存、磁盘的交换,搞的我焦头烂额,于是,想静下心来从头开始。

当我把 小林coding 的 《图解操作系统》看完之后,我发现对操作系统的理解更上一层楼。

用一段话,作为今天的开场白:

读书的根本目的,未必是解决现实问题,它更像一场心灵的抚慰。
一个喜欢读书的人,可能不会记得自己读过哪些书。
但是那些看过的故事、收获的感悟、浸染过的气质,就像一颗种子,会在你的身体里慢慢发芽长大,不断提升你的认知,打开你的视野。

二、CPU Cache 有多快

为什么有内存还需要 CPU Cache?

  • 根据摩尔定律,CPU的访问速度每 18 个月就会翻倍,内存的速度也会不断增长,但是增长的速度远远小于CPU,于是CPU和内存的访问性能被不断的拉大。

为了弥补 CPU 与内存两者的差距,在 CPU 内部引进了 CPU Cache,也被成为高速缓存

CPU Cache 通常分为大小不等的三级缓存,分别是 L1 Cache、L2 Cache 和 L3 Cache

img

CPU 访问高速缓存的时间:

  • L1 Cache:需要 2~4 个时钟周期
  • L2 Cache:需要 10~20 个时钟周期
  • L3 Cache:需要 20~60 个时钟周期
  • 内存:需要 200~300 个时钟周期

img

三、CPU Cache 的数据结构和读取过程是什么样的

CPU Cache 的数据是从内存中读取过来的,以一小块一小块的读取数据,在CPU Cache 中,这样的一小块数据被称为:Cache Line(缓存块)

一般来说,缓存块的大小为:64字节。也就意味着 L1 Cache 一次载入数据的大小是 64 字节

L1 Cache 一次性载入数据大小为 64 字节有什么作用?

在 Java 中,如果我们开辟一个 int[100] 的数组,每一个数组元素的大小为 4 字节。

相当于我们访问 int[0] 的数据,实际上 int[1]~int[15] 的数据都会被加载到我们的 CPU Cache 中。

因此,当我们下次访问这些数据时,直接从 CPU Cache 中查询,大大的提升了 CPU 读取数据的性能。

我们的 CPU 是怎么知道内存的数据在不在 CPU Cache 中呢?

1. 直接映射 Cache

前面我们提到过,CPU 访问内存数据时,是一小块一小块的读取的,这一小块的大小取决于:coherency_line_size

这里需要记住:

  • 在内存中,这一小块被称为:内存块
  • 在 CPU Cache 中,这一小块被称为:缓存块(Cache Line)

直接映射的策略:将我们内存块的地址映射到一个缓存块中的地址,映射实现的方式为【取模运算】,取模运算的结果就是内存块地址所对应的缓存块的地址。

比如:内存被划分 32 个内存块,CPU Cache 共有 8 个缓存块。假如我们的CPU想要访问第 15 号内存块,如果我们内存的数据已经被缓存到 CPU Cache 中,那么必定在第 7 号缓存块。因为 15 % 8 = 7

img

为了区分不同的内存块,在对应的缓存块中还会存储一个 组标记(Tag)。根据这个组标记来区分当前缓存块中的内存块的地址。

当然,除了组标记外,缓存块还有两个信息:

  • 从内存加载过来实际存放的数据(data)
  • 有效位(Valid bit):用来标记当前的缓存块的数据是否有效。如果为 0,则缓存块无效,会读取内存。

当然,我们的 CPU 从缓存块中读取数据时,并不是读取整个缓存块,而是读取 CPU 所需要的一个数据片段,这样的数据被称为一个 字(Word)

问题来了,我们怎么能找到这个 字 呢?答案是:需要一个偏移量(offset)

因此,一个内存的访问地址,包括 组标记(Tag)、缓存块索引(Index)、偏移量 这三种信息,于是 CPU 能够通过这些信息,在缓存块中找到缓存的数据。

而对于 CPU Cache 的数据结构,则是由 索引 + 有效位 + 组标记 + 数据块

img

如果内存的数据已经在 CPU Cache 中了,我们的CPU会得到内存地址的信息(组标记、索引、偏移量)。

那 CPU 访问一个内存地址的时候,会经历以下 4 个步骤:

  • 根据我们内存地址中的【索引】进行取模运算,计算出缓冲块中的索引,也就是缓冲块的地址。
  • 找到对应的缓存块后,需要判断当前缓存块的有效位
    • 如果是无效的,则直接访问内存,刷新数据
    • 如果是有效的,则继续往下执行
  • 根据我们内存地址的组标记找到缓存块中的组标记
    • 如果不相等,则直接访问内存,刷新数据
    • 如果相等,则继续往下执行
  • 根据内存地址的偏移量,从我们的缓存块中读取对应的 字(word)

四、如何写出让CPU跑的更快的代码

我们想一下,怎么才能写出让 CPU 跑的更快的代码?如果我们想要访问的数据在 CPU Cache 中,那么我们 CPU 的速度也会跑的越快。

L1 Cache 通常分为数据缓存和指令缓存,这是因为 CPU 会分别处理数据和指令,比如 1 + 1 = 2 这个运算,+ 是指令,会被放在 指令缓存 中,而输入的数字 1 会被放在数据缓存中。

1. 如何提升数据缓存的命中率
// 二维数组
int N = 100;
array[N][N] = 0;// 样例一:
for(int i = 0; i < N; i++){for(int j = 0; j < N; j++){array[i][j] = 0;}
}// 样例二:
for(int i = 0; i < N; i++){for(int j = 0; j < N; j++){array[j][i] = 0;}
}

我们猜测一下上述样例一和样例二当中,哪一个样例的速度比较快?

经过测试,样例一 array[i][j] 执行时间比样例二 array[j][i] 快好几倍。

因为我们上面讲过,CPU Cache 会一次性加载 64KB 的顺序数据到缓存中, 我们样例一的数据为顺序数组数据,样例二为跳跃数组数据。

因此,遇到这种遍历数组的情况时,按照内存布局顺序访问,将可以有效的利用 CPU Cache 带来的好处,这样我们代码的性能就会得到很大的提升,

2. 如何提升指令缓存的命中率

有如下数组:

// 当前数组的值在 0~99 进行随机
int array[N];
for(int i = 0; i < N; i++){array[i] = random(100);
}

接下来对这个数组做两个操作:

// 操作一:数组遍历
for(int i = 0; i < N; i++){if(array[i] < 50){array[i] = 0;}
}// 操作二:排序
sort(array, array + N);

有一个问题:你觉得是先遍历再排序速度快,还是先排序再遍历速度快呢?

CPU的分支预测器:如果分支预测可以预测到接下来要执行 if 里的指令,还是 else 指令的话,就可以「提前」把这些指令放在指令缓存中,这样 CPU 可以直接从 Cache 读取到指令,于是执行速度就会很快

通过上面的描述,我们如果元素是随机的,我们的分支预测器无法有效的工作,而当数组元素是顺序的,分支预测器会动态的根据历史数据对未来进行预测,这样命中率就会很高。

所以,答案是:先排序再遍历速度快

我们排序之后,刚开始数组的数据都小于 50,会疯狂的命中我们 if 指令,于是分支预测器将 if 指令放入指令缓存中,大大的提高运算的速度。

3. 如何提升多核CPU的缓存命中率

现代 CPU 都是多核心的,线程可能在不同 CPU 核心来回切换执行,这对 CPU Cache 不是有利的,虽然 L3 Cache 是多核心之间共享的,但是 L1 和 L2 Cache 都是每个核心独有的,如果一个线程在不同核心来回切换,各个核心的缓存命中率就会受到影响

当有多个同时执行「计算密集型」的线程,为了防止因为切换到不同的核心,而导致缓存命中率下降的问题,我们可以把线程绑定在某一个 CPU 核心上,这样性能可以得到非常可观的提升。

这篇关于【操作系统入门到成神系列 三】如何写出让CPU跑出更快的代码?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319896

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.