Gartner力推的“百页机器学习书”,“舒服”搞定概念+代码(附下载)

2023-11-01 02:30

本文主要是介绍Gartner力推的“百页机器学习书”,“舒服”搞定概念+代码(附下载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据文摘出品

作者:曹培信


去年十二月,一本名为《TheHundred-Page Machine LearningBook》的机器学习教程迅速走火,它由Gartner公司机器学习团队负责人、人工智能博士AndriyBurkov撰写,这本书如标题所言,去除封面目录才128页,但是却包含了机器学习50多年以来有实用价值的各种材料。


作者介绍说:“机器学习的初学者将在本书中获得足够的细节,可以很‘舒服’地理解书的内容;有经验的实践者可以使用这本书作为进一步自我完善的指南。”



这本书讲了什么?


这本书一共分为两大部分,在介绍了机器学习的基本知识之后,本书首先用8章讲了SupervisedLearning(监督式学习),而后用3章介绍了UnsupervisedLearning(非监督式学习)和其他学习方式。


具体目录如下图所示:



示例代码已经开源


如今,这本书所有涉及到的项目代码都在GitHub上开源啦!



也就是说,大家可以一边看书学习,一边用开源的代码进行实验了。不得不说,这些代码对新手真的太友好了,内容特别详细。


比如多元高斯分布(GaussianMixture Model GMM)这个内容,作者在书的9.2.4进行了详细的讲解:



在GitHub上也有对应的详细代码:


























































































importnumpy as npimportscipy as spimportmatplotlibimportmatplotlib.pyplot as pltimportmath
fromsklearn.neighbors import KernelDensity
importscipy.integrate as integratefromsklearn.kernel_ridge import KernelRidge
matplotlib.rcParams['mathtext.fontset']= 'stix'matplotlib.rcParams['font.family']= 'STIXGeneral'matplotlib.rcParams.update({'font.size':18})
mu1,sigma1 = 3.0, 1.0mu2,sigma2 = 8.0, 3.5
defsample_points():s1= np.random.normal(mu1, math.sqrt(sigma1), 50)
s2= np.random.normal(mu2, math.sqrt(sigma2), 50)return list(s1) + list(s2)
defcompute_bi(mu1local, sigma1local, mu2local, sigma2local, phi1local,phi2local):bis= []forxi in x:bis.append((sp.stats.norm.pdf(xi, mu1local, math.sqrt(sigma1local)) *phi1local)/(sp.stats.norm.pdf(xi, mu1local, math.sqrt(sigma1local)) *phi1local + sp.stats.norm.pdf(xi, mu2local, math.sqrt(sigma2local)) *phi2local))return bis#generate points used to plotx_plot= np.linspace(-2, 12, 100)#generate points and keep a subset of themx =sample_points()
colors= ['red', 'blue', 'orange', 'green']lw = 2mu1_estimate= 1.0mu2_estimate= 2.0sigma1_estimate= 1.0sigma2_estimate= 2.0phi1_estimate= 0.5phi2_estimate= 0.5
count =0whileTrue:plt.figure(count)axes = plt.gca()axes.set_xlim([-2,12])axes.set_ylim([0,0.8])plt.xlabel("$x$")plt.ylabel("pdf")plt.scatter(x, [0.005] * len(x), color='navy', s=30, marker=2,label="training examples")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu1_estimate,math.sqrt(sigma1_estimate)) for xp in x_plot], color=colors[1],linewidth=lw, label="$f(x_i \\mid \\mu_1 ,\\sigma_1^2)$")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu2_estimate,math.sqrt(sigma2_estimate)) for xp in x_plot], color=colors[3],linewidth=lw, label="$f(x_i \\mid \\mu_2 ,\\sigma_2^2)$")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu1, math.sqrt(sigma1)) forxp in x_plot], color=colors[0], label="true pdf")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu2, math.sqrt(sigma2)) forxp in x_plot], color=colors[0])
plt.legend(loc='upper right')plt.tight_layout()
fig1 = plt.gcf()fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left =0.08, hspace = 0, wspace = 0)fig1.savefig('../../Illustrations/gaussian-mixture-model-' +str(count) + '.eps', format='eps', dpi=1000, bbox_inches = 'tight',pad_inches = 0)fig1.savefig('../../Illustrations/gaussian-mixture-model-' +str(count) + '.pdf', format='pdf', dpi=1000, bbox_inches = 'tight',pad_inches = 0)fig1.savefig('../../Illustrations/gaussian-mixture-model-' +str(count) + '.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)#plt.show()bis1 = compute_bi(mu1_estimate, sigma1_estimate, mu2_estimate,sigma2_estimate, phi1_estimate, phi2_estimate)bis2 = compute_bi(mu2_estimate, sigma2_estimate, mu1_estimate,sigma1_estimate, phi2_estimate, phi1_estimate)#print bis1[:5]#print bis2[:5]mu1_estimate = sum([bis1[i] * x[i] for i in range(len(x))]) /sum([bis1[i] for i in range(len(x))])mu2_estimate = sum([bis2[i] * x[i] for i in range(len(x))]) /sum([bis2[i] for i in range(len(x))])
sigma1_estimate = sum([bis1[i] * (x[i] - mu1_estimate)**2 for i inrange(len(x))]) / sum([bis1[i] for i in range(len(x))])sigma2_estimate = sum([bis2[i] * (x[i] - mu2_estimate)**2 for i inrange(len(x))]) / sum([bis2[i] for i in range(len(x))])#print mu1_estimate, mu2_estimate#print sigma1_estimate, sigma2_estimatephi1_estimate = sum([bis1[i] for i in range(len(x))])/float(len(x))phi2_estimate = 1.0 - phi1_estimate
print phi1_estimate
count += 1
plt.close(count)
ifcount > 50:break


如何获得书和代码


书的链接:

http://themlbook.com/wiki/doku.php?id=start


代码链接:

https://github.com/aburkov/theMLbook


当然,文摘菌也帮大家下载并整理好了书和代码,后台回复“100页”就可以获得啦,赶紧开始学习起来吧!

这篇关于Gartner力推的“百页机器学习书”,“舒服”搞定概念+代码(附下载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319842

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置