Gartner力推的“百页机器学习书”,“舒服”搞定概念+代码(附下载)

2023-11-01 02:30

本文主要是介绍Gartner力推的“百页机器学习书”,“舒服”搞定概念+代码(附下载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据文摘出品

作者:曹培信


去年十二月,一本名为《TheHundred-Page Machine LearningBook》的机器学习教程迅速走火,它由Gartner公司机器学习团队负责人、人工智能博士AndriyBurkov撰写,这本书如标题所言,去除封面目录才128页,但是却包含了机器学习50多年以来有实用价值的各种材料。


作者介绍说:“机器学习的初学者将在本书中获得足够的细节,可以很‘舒服’地理解书的内容;有经验的实践者可以使用这本书作为进一步自我完善的指南。”



这本书讲了什么?


这本书一共分为两大部分,在介绍了机器学习的基本知识之后,本书首先用8章讲了SupervisedLearning(监督式学习),而后用3章介绍了UnsupervisedLearning(非监督式学习)和其他学习方式。


具体目录如下图所示:



示例代码已经开源


如今,这本书所有涉及到的项目代码都在GitHub上开源啦!



也就是说,大家可以一边看书学习,一边用开源的代码进行实验了。不得不说,这些代码对新手真的太友好了,内容特别详细。


比如多元高斯分布(GaussianMixture Model GMM)这个内容,作者在书的9.2.4进行了详细的讲解:



在GitHub上也有对应的详细代码:


























































































importnumpy as npimportscipy as spimportmatplotlibimportmatplotlib.pyplot as pltimportmath
fromsklearn.neighbors import KernelDensity
importscipy.integrate as integratefromsklearn.kernel_ridge import KernelRidge
matplotlib.rcParams['mathtext.fontset']= 'stix'matplotlib.rcParams['font.family']= 'STIXGeneral'matplotlib.rcParams.update({'font.size':18})
mu1,sigma1 = 3.0, 1.0mu2,sigma2 = 8.0, 3.5
defsample_points():s1= np.random.normal(mu1, math.sqrt(sigma1), 50)
s2= np.random.normal(mu2, math.sqrt(sigma2), 50)return list(s1) + list(s2)
defcompute_bi(mu1local, sigma1local, mu2local, sigma2local, phi1local,phi2local):bis= []forxi in x:bis.append((sp.stats.norm.pdf(xi, mu1local, math.sqrt(sigma1local)) *phi1local)/(sp.stats.norm.pdf(xi, mu1local, math.sqrt(sigma1local)) *phi1local + sp.stats.norm.pdf(xi, mu2local, math.sqrt(sigma2local)) *phi2local))return bis#generate points used to plotx_plot= np.linspace(-2, 12, 100)#generate points and keep a subset of themx =sample_points()
colors= ['red', 'blue', 'orange', 'green']lw = 2mu1_estimate= 1.0mu2_estimate= 2.0sigma1_estimate= 1.0sigma2_estimate= 2.0phi1_estimate= 0.5phi2_estimate= 0.5
count =0whileTrue:plt.figure(count)axes = plt.gca()axes.set_xlim([-2,12])axes.set_ylim([0,0.8])plt.xlabel("$x$")plt.ylabel("pdf")plt.scatter(x, [0.005] * len(x), color='navy', s=30, marker=2,label="training examples")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu1_estimate,math.sqrt(sigma1_estimate)) for xp in x_plot], color=colors[1],linewidth=lw, label="$f(x_i \\mid \\mu_1 ,\\sigma_1^2)$")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu2_estimate,math.sqrt(sigma2_estimate)) for xp in x_plot], color=colors[3],linewidth=lw, label="$f(x_i \\mid \\mu_2 ,\\sigma_2^2)$")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu1, math.sqrt(sigma1)) forxp in x_plot], color=colors[0], label="true pdf")plt.plot(x_plot, [sp.stats.norm.pdf(xp, mu2, math.sqrt(sigma2)) forxp in x_plot], color=colors[0])
plt.legend(loc='upper right')plt.tight_layout()
fig1 = plt.gcf()fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left =0.08, hspace = 0, wspace = 0)fig1.savefig('../../Illustrations/gaussian-mixture-model-' +str(count) + '.eps', format='eps', dpi=1000, bbox_inches = 'tight',pad_inches = 0)fig1.savefig('../../Illustrations/gaussian-mixture-model-' +str(count) + '.pdf', format='pdf', dpi=1000, bbox_inches = 'tight',pad_inches = 0)fig1.savefig('../../Illustrations/gaussian-mixture-model-' +str(count) + '.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)#plt.show()bis1 = compute_bi(mu1_estimate, sigma1_estimate, mu2_estimate,sigma2_estimate, phi1_estimate, phi2_estimate)bis2 = compute_bi(mu2_estimate, sigma2_estimate, mu1_estimate,sigma1_estimate, phi2_estimate, phi1_estimate)#print bis1[:5]#print bis2[:5]mu1_estimate = sum([bis1[i] * x[i] for i in range(len(x))]) /sum([bis1[i] for i in range(len(x))])mu2_estimate = sum([bis2[i] * x[i] for i in range(len(x))]) /sum([bis2[i] for i in range(len(x))])
sigma1_estimate = sum([bis1[i] * (x[i] - mu1_estimate)**2 for i inrange(len(x))]) / sum([bis1[i] for i in range(len(x))])sigma2_estimate = sum([bis2[i] * (x[i] - mu2_estimate)**2 for i inrange(len(x))]) / sum([bis2[i] for i in range(len(x))])#print mu1_estimate, mu2_estimate#print sigma1_estimate, sigma2_estimatephi1_estimate = sum([bis1[i] for i in range(len(x))])/float(len(x))phi2_estimate = 1.0 - phi1_estimate
print phi1_estimate
count += 1
plt.close(count)
ifcount > 50:break


如何获得书和代码


书的链接:

http://themlbook.com/wiki/doku.php?id=start


代码链接:

https://github.com/aburkov/theMLbook


当然,文摘菌也帮大家下载并整理好了书和代码,后台回复“100页”就可以获得啦,赶紧开始学习起来吧!

这篇关于Gartner力推的“百页机器学习书”,“舒服”搞定概念+代码(附下载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319842

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(