投论文不太顺利

2023-11-01 02:30
文章标签 论文 顺利 不太

本文主要是介绍投论文不太顺利,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 中文

   被拒绝太多了,去年加今年估计6篇以上。

  最近又被拒绝了1篇。 因为一个引用 错误,让审稿人直接拒稿,其他理由都是理由了。。。。

项目上的论文投稿,说内容可以,图不清晰,可那个图不清晰啊??对方也居家办公,无法给我答复。

学生投了一个CSCD的,不到一周,让发增刊,学生说算了,大不了改投。凭啥增刊啊! 

2 英文

  因为急着给学生申报优秀研究生,结果论文就是迟迟没有结果,DIP 时间太长。

 审稿最短,但现在修改后的结果时间就比较长。。。。

Editor comments:    
In References, do NOT abbreviate journal names or conference titles.


 

3.3 编辑说  文献的 缩写要用全称,还要Review,难道不应该直接proof再改吗?

 I have completed my evaluation of your manuscript. I invite you to resubmit your manuscript after addressing the comments below. Please resubmit your revised manuscript by Mar 16, 2022.

Editor comments:    
In References, do NOT abbreviate journal names or conference titles.

选OA的都是那些牛人呢?

I understand that I must wait for 24 months before I can share my accepted manuscript publicly in my institution or funder's repository. I can immediately share it on non-commercial personal homepages and blogs, within my institution, and privately with collaborators.

又进入DIP了!3稿了,快点给结果吧。

4月8日录用,欢迎引用!

Jun Zhang, Yaming Lu, Zhe Yang, Xin Zhu, Ting Zheng, Xin Liuc, Yaogang Tian,Weiguang Li.Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN[J].Automation in Construction,2022,
https://doi.org/10.1016/j.autcon.2022.104260. In press

 The full-text can be accessed by

 https://authors.elsevier.com/a/1exWq3IhXMtgExhttps://www.researchgate.net/deref/https%3A%2F%2Fauthors.elsevier.com%2Fa%2F1exWq3IhXMtgEx

2.2  耗时11个月

 每次结果处理都要1个多月

一作着急,反复催我,我给编辑发邮件,他马上回复,修改!!看来要及时和编辑沟通。

仔细看了审稿意见,very nice。

1) 编辑帮忙改了 highlight, 并告知我们如何改。

2)审稿人 提问,并让我们在正文补充。

太好了,比之前5个reviewers, 4/5 agree 但最后拒稿 好多了。可惜了Q1啊。

第4次修改

Accept

  0511 Proof Completed!

以下这篇被拒了,主要问题是 英文表达不好,没让审稿人理解创新点。以及 图在整理上不细致,3D 重构存在空洞,别认为不足。

 这个最长!!堪比国内期刊的速度了

英文表达没过关,Z在继续修改。

学生毕业了不想改,重新补实验,后期再改。

Disappointed!

 今年还得准备1-2篇英文+2篇中文,希望再投和拟投的论文都中!!!

4 失败乃成功之母

 

 

 

Dr. Zhao  4月投稿的 OA  Wireless Communications and Mobile Computing , 今天收到录用了。

这篇关于投论文不太顺利的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319835

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 参考论文 无水印

持续更新中,2024年数学建模比赛思路代码论文都会发布到专栏内,只需订阅一次!  完整论文+代码+数据结果链接在文末!  订阅后可查看参考论文文件 第一问 1.1 问题重述 这个问题围绕的是华北山区的某乡村,在有限的耕地条件下,如何制定最优的农作物种植策略。乡村有 34 块露天耕地和 20 个大棚,种植条件包括粮食作物、蔬菜、水稻和食用菌。除了要考虑地块的面积、种植季节等,还要确保

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

2024年全国大学生数学建模A题借鉴论文

问题  1: 舞龙队的动态位置与速度计算 1. **螺旋线的几何建模**:根据题目描述,舞龙队沿着等距螺旋线前进。螺旋线的螺距为 55 cm, 需根据极坐标公式确定每节板凳的位置。 -  极坐标螺旋线方程:\( r = a + b\theta \), 其中  \( b \)  是螺距, 可以利用该方程计算 每秒舞龙队的各个节数的坐标。 2. **速度计算**:给定龙头的行进速度为 1 m/s ,