NASNet论文详解

2023-10-31 20:38
文章标签 详解 论文 nasnet

本文主要是介绍NASNet论文详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NASNet,论文的全名叫做Learning Transferable Architectures for Scalable Image Recognition.

这一篇论文是对神经网络架构搜索开篇之作NAS的集成和发展,也是由谷歌的Zoph等人提出来的,针对NAS论文中的缺点进行改进,在分类精度和训练资源、时间上,都优于前者。

NASNet论文的基本设计思想是:

  1. 和NAS论文一样,采用controller RNN来预测子网络参数
  2. 第一次提出了Cell和Block的概念
  3. controller RNN不再用来预测每一层的网络参数,而是用来预测Cell里面的Block参数

首先介绍一下什么是Cell和Block。Cell可以看做是整体网络架构里面的一个单元块,类似ResNet架构的残差块或者MobileNet V2的bottleneck,整个网络就是由这些单元块堆叠连接而成。

Cell分两种:Normal和Reduction。当输入特征和输出特征的分辨率是一致时,采用Normal Cell,当输入特征的分辨率是输入特征的一半时,采用Reduction Cell。Reduction Cell的设计方法Normal Cell基本一样,只是在输入特征上添加了一个stride=2的卷积操作,降低分辨率。在整体网络架构中,Normal Cell和Reduction Cell的设计原则是每N个Normal Cell中插入一个Reduction Cell,如下图所示。
在这里插入图片描述
图1. Cifar-10和ImageNet上的NASNet网络架构

Block是Cell里面的基本单元,共有B个(论文取5)。每个Block有两个输入,分别经过各自的operation之后再结合(相加或者衔接)作为输出,Block的输出称为隐状态。对于第 i i i个Block,输入的候选范围包括前面 i − 1 i-1 i1个Block的隐状态以及前两个Cell的输出,Block的操作的候选空间如下图所示。
在这里插入图片描述
图2. Block操作的候选空间

与NAS论文里controller RNN预测每一个layer的操作参数不同,NASNet的controller RNN是用来预测Cell里面每一个Block的参数。具体如下图所示。
在这里插入图片描述
图3. NASNet的controller RNN

Block的参数预测步骤有:

  1. 从输入候选范围内选择两个隐状态作为Block的两个输入
  2. 从操作候选空间选择operation作为步骤1中两个输入的操作
  3. 选择一个操作用来结合步骤2中的两个输出

预测步骤总共会循环B次,直至预测出Cell所有Block结构为止。

Controller RNN的训练方法和NAS论文中一样,也是通过验证集的精度作为reward来优化controller的参数,采用的强化学习中的PPO(Proximal Policy Optimization)算法。

在训练的时候,只选择一种Normal和Reduction Cell,同一个网络中相同类型的Cell结构是共享的,所以controller RNN只需要预测一个Cell的结构即可。从搜索空间的复杂度来看,这种方法设计极大地减小了搜索的次数和范围,这种思想被后来的其他NAS论文广泛引用,后面的博客介绍的其他方法会持续提到。

作者在训练的过程还加了一种额外的技巧,即先在小的数据集上(如Cifar-10)搜索Cell结构,等搜索结果出来后,再堆叠更多的Cell,应用在大数据集上(如ImageNet)。这样在搜索的过程中,子网络模型训练的时间便大幅减小,提高搜索的效率。

在Cifar-10数据上,论文使用了500个GPU,搜索了4天的时间。相比NAS论文的实验,搜索效率提升了7倍。在训练子网络时,采用Scheduled DropPath的方法,以一定的概率(随着迭代的次数线性增加)随机扔掉Cell里的某些路径。下图是NASNet搜索出来的Normal和Reduction Cell的结构。
在这里插入图片描述
图5. 搜索出来的Normal和Reduction Cell结构图

论文把cifar-10上搜索出来的Cell结构迁移到ImageNet数据集上,表现出了很好的泛化能力。

以下两张图是NASNet搜索出来的Cell按照图1里的方式叠加成网络后训练出来的结果。可以看出,在同一参数量等级的模型上,NASNet比手工设计的网络模型精度更好,也比NAS论文的实验结果更优。
在这里插入图片描述
图6. Cifar-10实验结果和对比

在这里插入图片描述
图7. ImageNet实验结果和对比

这篇关于NASNet论文详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317973

相关文章

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输