本文主要是介绍Loj#3320-「CCO 2020」旅行商问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
正题
题目链接:https://loj.ac/p/3320
题目大意
有一张 n n n个点的无向完全图,每一条边是红色或者蓝色,对于每个点 s s s求从这个点出发的一条尽量短的经过所有点的路径。
1 ≤ n ≤ 2000 1\leq n\leq 2000 1≤n≤2000
解题思路
显然地猜测一下最短的长度肯定是 n n n,说是找一条路径,实际上我们是能够找到一个颜色交替只有一次的环的,然后交替位置就在 s s s的旁边。
我们构造一下,此时有两条不相交的路径 s → x , t → y s\rightarrow x,t\rightarrow y s→x,t→y,并且两条路径上颜色都相同,一条红色一条蓝色。
我们假设 s → x s\rightarrow x s→x的路径是红色,此时对于一个未加入的点 z z z,如果 ( x , z ) (x,z) (x,z)是红色或者 ( y , z ) (y,z) (y,z)是蓝色那么直接加长路径即可。
否则也就是说 ( x , z ) (x,z) (x,z)是蓝色且 ( y , z ) (y,z) (y,z)是红色,我们考虑 ( x , y ) (x,y) (x,y)之间的路径颜色,假设是红色,那么如图
我们将 y y y弹出路径 t → y t\rightarrow y t→y,然后加入 s → x s\rightarrow x s→x后就可以再加入 z z z了。
如果是蓝色同理弹另一边。
但是此时会出现两种情况:
- 蓝色路径弹出后为空了,那么此时我们再找一个新的点当做新的 t t t即可,反正我们的要求是 s s s不变。
- 红色路径弹出后为空了,那么此时我们将 z z z作为新的 t t t,然后原本的 s → t s\rightarrow t s→t路径变为 s → x s\rightarrow x s→x路径。
时间复杂度: O ( n 2 ) O(n^2) O(n2)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=2100;
int n,G[N][N];
char s[N];
vector<int>l,r;
int main()
{scanf("%d",&n);if(n==2){printf("2\n1 2\n2\n2 1\n");return 0;}for(int i=2;i<=n;i++){scanf("%s",s+1);for(int j=1;j<i;j++)G[i][j]=G[j][i]=(s[j]=='R');}for(int s=1;s<=n;s++){int z=s%n+1,g=0;l.clear();r.clear();l.push_back(z);r.push_back(s);g=G[s][z%n+1];for(int x=z%n+1;x!=s;x=x%n+1){if(G[r[r.size()-1]][x]==g)r.push_back(x);else if(G[l[l.size()-1]][x]==!g)l.push_back(x);else{if(G[l[l.size()-1]][r[r.size()-1]]==g){r.push_back(l[l.size()-1]);r.push_back(x);l.pop_back();if(!l.size()){x=x%n+1;if(x==s)break;l.push_back(z=x);}}else{l.push_back(r[r.size()-1]);l.push_back(x);r.pop_back();if(!r.size()){l.pop_back();l.swap(r);l.push_back(x);z=x;g=!g;}}}}printf("%d\n",n);for(int i=0;i<r.size();i++)printf("%d ",r[i]);for(int i=l.size()-1;i>=0;i--)printf("%d ",l[i]);putchar('\n');}return 0;
}
这篇关于Loj#3320-「CCO 2020」旅行商问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!