代码随想录Day40-单调栈:力扣第496e、503m、42h、84h题

2023-10-30 23:30

本文主要是介绍代码随想录Day40-单调栈:力扣第496e、503m、42h、84h题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

496e. 下一个更大元素 I

题目链接
代码随想录文章讲解链接

方法一:单调栈+哈希表

用时:13m52s

思路

维护一个栈底到栈顶是单调递减的栈,从后往前遍历数组nums2,更新栈。nums2当前元素nums2[i]的下一个更大元素就是栈顶元素,若栈顶为空则表示nums2[i]之后没有比他大的元素。用哈希表存储,然后遍历nums1时再从哈希表中获取值。

  • 时间复杂度: O ( m + n ) O(m+n) O(m+n)
  • 空间复杂度: O ( m + n ) O(m+n) O(m+n)
C++代码
class Solution {
public:vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {stack<int> stk;unordered_map<int, int> hashMap;vector<int> res(nums1.size(), 0);for (int i = nums2.size() - 1; i >= 0; --i) {while (!stk.empty() && nums2[i] > stk.top()) stk.pop();hashMap[nums2[i]] = stk.empty() ? -1 : stk.top();stk.push(nums2[i]);}for (int i = 0; i < res.size(); ++i) res[i] = hashMap[nums1[i]];return res;}
};

看完讲解的思考

无。

代码实现遇到的问题

无。


503m. 下一个更大元素II

题目链接
代码随想录文章讲解链接

方法一:单调栈

用时:16m28s

思路

维护一个栈底到栈顶单调递减的单调栈,遍历两遍数组。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
C++代码
class Solution {
public:vector<int> nextGreaterElements(vector<int>& nums) {int size = nums.size();stack<int> stk;vector<int> res(size, -1);for (int i = 0; i < size * 2; ++i) {while (!stk.empty() && nums[stk.top()] < nums[i % size]) {res[stk.top()] = nums[i % size];stk.pop();}stk.push(i % size);}return res;}
};

看完讲解的思考

无。

代码实现遇到的问题

无。


42h. 接雨水

题目链接
代码随想录文章讲解链接

方法一:按列统计

用时:28m51s

思路

分别统计每一列雨水的高度,设某一列i左边最高的柱子高度为L,列i右边最高的柱子高度为R,若min(L,R)大于列i的高度,则列i的雨水量为min(L,R) - height[i],否则为0。
先分别记录下每个位置左右两边最高的柱子的高度,然后再统计每一列雨水的高度。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
C++代码
class Solution {
public:int trap(vector<int>& height) {int size = height.size();vector<int> leftMax(size, 0);vector<int> rightMax(size, 0);int maxHeight = 0;int res = 0;// 记录每个位置左右两边最高的柱子高度for (int i = 0; i < size; ++i) {leftMax[i] = maxHeight;maxHeight = max(maxHeight, height[i]);}maxHeight = 0;for (int i = size - 1; i >= 0; --i) {rightMax[i] = maxHeight;maxHeight = max(maxHeight, height[i]);}// 统计每一列的雨水for (int i = 1; i < size - 1; ++i) {int minHeight = min(leftMax[i], rightMax[i]);if (minHeight > height[i]) res += minHeight - height[i];}return res;}
};

方法二:单调栈按行统计

用时:13m28s

思路

维护一个栈底到栈顶单调递减的单调栈。
遍历数组的时候,若遇到小于等于栈顶元素的元素,则直接入栈。
若遇到大于栈顶元素的元素,此时栈顶元素作为凹陷处,倒数第二个栈顶元素和当前元素作为两头的柱子,可以形成一个坑接住雨水,接住雨水的量等于(min(height[i], height[stk.top()]) - height[mid]) * (i - stk.top() - 1),分别是高乘宽。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
C++代码
class Solution {
public:int trap(vector<int>& height) {stack<int> stk;int res = 0;for (int i = 0; i < height.size(); ++i) {while (!stk.empty() && height[i] > height[stk.top()]) {int mid = stk.top();stk.pop();if (!stk.empty()) res += (min(height[i], height[stk.top()]) - height[mid]) * (i - stk.top() - 1);}stk.push(i);}return res;}
};

看完讲解的思考

无。

代码实现遇到的问题

无。


84h. 柱状图中最大的矩形

题目链接
代码随想录文章讲解链接

方法一:三次遍历

用时:18m4s

思路

以某个柱子为基准,最大矩形面积与该柱子两侧第一个比它矮的柱子的位置有关。
前两次遍历找到每个柱子左右两侧第一个比它矮的柱子的位置。
最后一次遍历计算以各个柱子为基准的最大矩形面积,最大值即为答案。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
C++代码
class Solution {
public:int largestRectangleArea(vector<int>& heights) {int size = heights.size();vector<int> leftMin(size);vector<int> rightMin(size);int res = 0;// 记录每个柱子左边第一个比它小的柱子的位置leftMin[0] = -1;for (int i = 1; i < size; ++i) {int left = i - 1;while (left >= 0 && heights[left] >= heights[i]) left = leftMin[left];leftMin[i] = left;}// 记录每个柱子右边第一个比它小的柱子的位置rightMin[size - 1] = size;for (int i = size - 2; i >= 0; --i) {int right = i + 1;while (right < size && heights[right] >= heights[i]) right = rightMin[right];rightMin[i] = right;}// 遍历以每个柱子为基准的矩形大小,记录最大值for (int i = 0; i < size; ++i) res = max(res, heights[i] * (rightMin[i] - leftMin[i] - 1));return res;}
};

方法二:单调栈

用时:33m9s

思路

因为我们要找到某个基准柱子左右两边比它小的柱子的位置,所以药维护一个栈底到栈顶单调递增的单调栈,这样对于栈顶元素的柱子,它左边第一个比它小的柱子就是第二个栈顶元素,右边第一个比它小的元素就是遍历过程中比栈顶元素小的元素。
遍历数组,若元素大于等于栈顶元素,则入栈;若元素小于栈顶元素,则取出栈顶元素作为基准柱子,然后弹出栈顶元素,基准柱子左边第一个比它小的柱子就是此时的栈顶元素,右边第一个比它小的柱子就是当前遍历的元素,然后记录矩形的面积并更新答案。
由于在遍历的过程中,可能会出现栈为空的情况,以及数组本身就是递增数组的情况,此时会有特殊情况需要处理,可以在数组前后各加入一个0,简化逻辑,因为0一定是小于柱子高度,能够作为左右两端最矮的基准柱子的边界。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
C++代码
class Solution {
public:int largestRectangleArea(vector<int>& heights) {stack<int> stk;int res = 0;heights.insert(heights.begin(), 0);heights.push_back(0);stk.push(0);for (int i = 1; i < heights.size(); ++i) {while (heights[i] < heights[stk.top()]) {int mid = stk.top();stk.pop();res = max(res, heights[mid] * (i - stk.top() - 1));}stk.push(i);}return max(res, heights[stk.top()]);}
};

看完讲解的思考

无。

代码实现遇到的问题

边界问题处理了半天没搞定,在数组前后各加入一个0的方法真巧妙。


最后的碎碎念

最近都在搞比赛,好久没刷题了,比赛目前搞得差不多了,得接着刷题了。
希望比赛能拿个好成绩,求求求求求求了!

这篇关于代码随想录Day40-单调栈:力扣第496e、503m、42h、84h题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/311264

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计