python 实现工业生成批号的旋转

2023-10-30 17:41

本文主要是介绍python 实现工业生成批号的旋转,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题提出:流水线的旋转批号  进行识别 ,识别的基础就是对图片进行旋转到上方,这样有助于ocR识别

面对这个问题,提出的思路是 提出一个正确的图案,使用sift匹配 输入图案与模版的特征图,生成匹配好的特征对,然后根据特征独取出坐标 ,对坐标进行欧式聚类计算,形成n个距离,使用方差来判定是否正确匹配

为了更好的处理特征对,对图片 形态学处理,找出字符的外接矩形框 

最后截图 并保存,

下面给出部分主要代码:

1、图片输入 并计算sift特征

sift = cv2.xfeatures2d.SURF_create()kp1, des1 = sift.detectAndCompute(img1_gray, None)kp2, des2 = sift.detectAndCompute(imgRot, None)# BFmatcher with default parmsbf = cv2.BFMatcher(cv2.NORM_L2)matches = bf.knnMatch(des1, des2, k = 2) goodMatch = []                 #利用sift算子 进行筛选匹配for m,n in matches:if m.distance < 0.6*n.distance:#可以调节的参数  特征点匹配约束  数字越小 效果越精确goodMatch.append(m)p1 = [kpp.queryIdx for kpp in goodMatch]   #解析出 相似的一对 点的坐标p2 = [kpp.trainIdx for kpp in goodMatch]   post1 = np.int32([kp1[pp].pt for pp in p1])#    post2 = np.int32([kp2[pp].pt for pp in p2]) + (w1, 0)post2 = np.int32([kp2[pp].pt for pp in p2])list=[]for (x1, y1), (x2, y2) in zip(post1, post2):
#        print(x1,y1,x2,y2)p1=np.array([x1,y1])           #利用相似对应点 距离相同的原理,利用距离方差大小判断 是否旋转到合理的角度p2=np.array([x2 ,y2 ])p3=p2-p1p4=math.hypot(p3[0],p3[1])list.append(p4)listvar=np.var(list)ave=listvar/len(list)

2、其中不断旋转图片,使其符合筛选需要

le=imgRot.shape[1]l1=int(le/2-150)l2=int(le/2+150)imgR=imgRot[l1:l2,l1:l2]gray = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)(_, thresh) = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)closed = cv2.erode(thresh, None, iterations = 12)closed1=255-closed# find the contours in the thresholded image, then sort the contours# by their area, keeping only the largest onecnts = cv2.findContours(closed1.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = imutils.grab_contours(cnts)c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]# compute the rotated bounding box of the largest contourrect = cv2.minAreaRect(c)box_origin = cv2.cv.BoxPoints(rect) if imutils.is_cv2() else cv2.boxPoints(rect)box1 = np.int0(box_origin)cv2.drawContours(imgR, [box1], -1, (0,255,0), 3)cv2.imshow("Image", imgR)cv2.waitKey(0)

3、最终裁剪图片下面把涉及到的函数贴一下

def imagecrop(image,box):xs = [x[1] for x in box]ys = [x[0] for x in box]cropimage = image[min(xs):max(xs),min(ys):max(ys)] cv2.imwrite('cropimage2.png',cropimage)return cropimage
def Nrotate(angle,valuex,valuey,pointx,pointy):angle = (angle/180)*math.pivaluex = np.array(valuex)valuey = np.array(valuey)nRotatex = (valuex-pointx)*math.cos(angle) - (valuey-pointy)*math.sin(angle) + pointxnRotatey = (valuex-pointx)*math.sin(angle) + (valuey-pointy)*math.cos(angle) + pointyreturn (nRotatex, nRotatey)
#顺时针旋转
def Srotate(angle,valuex,valuey,pointx,pointy):angle = (angle/180)*math.pivaluex = np.array(valuex)valuey = np.array(valuey)sRotatex = (valuex-pointx)*math.cos(angle) + (valuey-pointy)*math.sin(angle) + pointxsRotatey = (valuey-pointy)*math.cos(angle) - (valuex-pointx)*math.sin(angle) + pointyreturn (sRotatex,sRotatey)
#将四个点做映射
def rotatecordiate(angle,rectboxs,pointx,pointy):output = []for rectbox in rectboxs:if angle>0:output.append(Srotate(angle,rectbox[0],rectbox[1],pointx,pointy))else:output.append(Nrotate(-angle,rectbox[0],rectbox[1],pointx,pointy))return outputdef rotate_bound_white_bg(image, angle):# grab the dimensions of the image and then determine the# center(h, w) = image.shape[:2](cX, cY) = (w // 2, h // 2)# grab the rotation matrix (applying the negative of the# angle to rotate clockwise), then grab the sine and cosine# (i.e., the rotation components of the matrix)# -angle位置参数为角度参数负值表示顺时针旋转; 1.0位置参数scale是调整尺寸比例(图像缩放参数),建议0.75M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)cos = np.abs(M[0, 0])sin = np.abs(M[0, 1]) # compute the new bounding dimensions of the imagenW = int((h * sin) + (w * cos))nH = int((h * cos) + (w * sin)) # adjust the rotation matrix to take into account translationM[0, 2] += (nW / 2) - cXM[1, 2] += (nH / 2) - cY # borderValue 缺失背景填充色彩,此处为白色,可自定义return cv2.warpAffine(image, M, (nW, nH),borderValue=(0,0,0))# borderValue 缺省,默认是黑色(0, 0 , 0)# return cv2.warpAffine(image, M, (nW, nH)) 

如果需要可以下载我的完成程序,交流请联系哦

完整代码https://download.csdn.net/download/weixin_44576543/12594632

 

 

 

这篇关于python 实现工业生成批号的旋转的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_44576543/article/details/107225860
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/309567

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)