本文主要是介绍Python 潮流周刊#24:no-GIL 提案正式被采纳了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
△点击上方“Python猫”关注 ,回复“1”领取电子书
你好,我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容,大部分为英文。标题取自其中两则分享,不代表全部内容都是该主题,特此声明。
本周刊的源文件归档在 Github 上,已收获 777 star 好评,如果你也喜欢本周刊,就请给颗 star 支持一下吧:https://github.com/chinesehuazhou/python-weekly
🦄文章&教程
1、PEP-703 无 GIL CPython 的进展[1]
PEP-703 是 no-GIL 项目形成的提案,就在本周,Python 指导委员会宣布采纳了这个提案!这篇文章写于消息宣布的两周前,总结了过去一段时间里发生的技术思考和进展。(附:PEP-703 的讨论[2])
2、PEP-730 CPython 提供对 iOS 的官方支持[3]
这是一个新提案,建议 CPython 提供对 iOS 系统的 Tier 3 级支持。如果提案被采纳,则 Python 将会有更广泛的使用。BeeWare[4] 和 Kivy[5] 是支持 iOS 的 Python APP 开发框架,说明了技术的可行性。
3、Django 进阶:开发高级的功能[6]
文章探讨在 Django 应用中集成一些高级的特性,例如:实现所见即所得编辑器、用户认证授权、实时通信功能、异步任务、集成 Elasticsearch 作全文搜索、自动化测试与持续集成。
4、在 Python 中开发异步的任务队列[7]
介绍了使用 multiprocessing.Pool、multiprocessing.Queue 和 Redis 实现简单的任务队列,实现基础的任务调度处理。
5、Flask、它的生态和向后兼容性[8]
上期周刊分享了一则吐槽 Flask 向后兼容性不好的文章(见下),这篇是对它的回应,作者是 Flask 的维护者之一。
6、继续关于 Flask 的讨论[9]
这是上周《我们必须聊聊 Flask[10]》的后续,作者收到了一些正面和反面的回应,文章延续了之前的话题,并主要反驳了一些观点。
7、介绍 rip - 快速而简约的 pip 实现[11]
rip 是用 Rust 开发的 PyPI 包解析及安装库,即 Rust 版本 pip。它试图在 Conda 和 PyPI 间架起一座坚固的桥梁,文章介绍它为了克服这两者的主要区别(元数据提取、Wheel 文件元数据、依赖项规范)而做的一些工作。
8、使用 Rust 将数据分析速度提高 180,000 倍[12]
如何使用 Rust 实现关键代码来提升 Python 程序的性能?文章从多个方面优化 k-CorrSet 问题的实现,得到了很高的速度提升。
9、什么是 lambda 表达式?[13]
什么是 lambda 表达式和 lambda 函数?lambda 函数与 Python 的其它函数有何不同?它有什么局限性、什么时候应该避免使用、通常使用在什么场景?
10、手撸个视频翻译和配音工具玩玩 结果不太妙[14]
视频翻译是对原始语言的视频处理后,显示为其它语言的字幕及配音。文章是一个低成本的尝试,技术栈:语音识别使用 openai-whisper 离线模型、文字翻译使用 Google 接口、文字合成语音使用 Microsoft Edge tts。
11、掌握使用 FastAPI 进行集成测试[15]
集成测试是指将各个代码单元作为一个整体进行测试。文章介绍基于 FastAPI 的集成测试方法,包括如何模拟身份验证、如何模拟外部 API、如何模拟 MangoDB 相关操作、如何模拟 AWS S3。
12、Python 代码转为 LATEX 公式工具[16]
latexify_py 是一个 Google 开源的 Python 包,可以将 Python 源代码片段编译为相应的 LaTeX 表达式。文章介绍了它的使用方法,包括如何将 Python 函数转为公式、Latexify 参数设定、Latexify 生成伪代码。
🎁Python潮流周刊🎁已免费发布了 24 期,访问下方链接,即可查看全部内容:https://pythoncat.top/tags/weekly[17]
如果你觉得周刊有价值,请表达小小心意,赞赏一下猫哥吧~~
🐿️项目&资源
1、celery:分布式任务队列[18]
Python 中比较成熟的任务队列库,支持 RabbitMQ、Redis 等中间件,很容易与主流 Web 框架集成。(star 22.4K)
2、rq:简单的任务队列[19]
RQ(Redis Queue)是基于 Redis 的任务作业库,使用门槛低,支持排队、定时、重试等功能。(star 9.2K)
3、huey:轻量级的任务队列[20]
简单轻量级的任务队列库,支持 Redis、SQLite、文件系统和内存存储,支持多进程、多线程或 Greenlet 任务执行模型。(star 4.7K)
4、rip:快速解决和安装 Python 包(Rust 版 pip)[21]
用 Rust 实现的 pip,支持下载、解析和安装 PyPI 包,支持 wheel (部分支持),计划将 sdist 文件。
5、Selenium-python-helium:Web 自动化库,让 Selenium 更好用[22]
Selenium 是 Web 自动化的最优库之一,Helium 是在其基础上的封装,使 Web 自动化更为方便。除了高级 API,它还简化了 Web 驱动管理、支持与嵌套的 iFrame 中元素交互、支持隐式等待、支持显式等待。(star 3.6K)
6、rendercv:用 YAML/JSON 文件创建 PDF 格式的简历[23]
它支持解析 YAML 及 JSON 文件的简历,创建 latex 文件,然后渲染成 PDF 格式。目前仅有一款主题。
7、latexify_py:用 Python 代码生成 LaTeX 表达式[24]
可以将 Python 源码或 AST 编译为 LaTex,使用 IPython 来漂亮地打印编译的函数。(star 6.5K)
8、localpilot:Mac 上的 Github Copilot[25]
在 Macbook 本机上使用的编程助手,配置及使用非常简易。(star 2.6K)
9、annoy:C++/Python 的近似最近邻搜索[26]
用于搜索空间中靠近给定查询点的点,与其它同类库的最大不同是可使用静态文件作为索引,可实现跨进程共享索引。被 Spotify 用作音乐推荐。(star 12.1K)
10、voyager:用于 Python 和 Java 的近似邻搜索库[27]
可对内存中的向量集合执行快速的近似最近邻搜索。也是出自 Spotify,每天被查询数亿次,扛得住海量用户的请求。召回率比 annoy 高。
11、Test-Agent:国内首个测试行业大模型工具[28]
它旨在构建测试领域的“智能体”,融合大模型和质量领域工程化技术,促进质量技术代系升级。开源了测试领域模型 TestGPT-7B,该模型以 CodeLlama-7B 为基座。
12、waymax:用于自动驾驶研究的基于 JAX 的模拟器[29]
Waymo 是 Google 旗下的自动驾驶公司,Waymax 是其开源的轻量级、多智能体、基于 JAX 的自动驾驶模拟器,可轻松分发和部署在 GPU 和 TPU 等硬件加速器上。
🐢播客&视频
1、Python 的代码生成:拆解 Jinja[30]
Jinja 的主要作者 Armin Ronacher 在 2012 年的演讲视频,介绍了 Jinja 编译器基础结构的设计,为什么这样设计,以及不同版本的迭代发展过程。(附:演讲的 PPT[31])
2、让我们聊一聊模板[32]
Armin Ronacher 在 2014 年的演讲视频,比较了 Jinja 和 Django 的模板,分析它们产生截然不同设计的历史原因。(附:演讲的 PPT[33])
3、JupyterCon 2023 视频 86 个[34]
JupyterCon 是一个专注于 Jupyter 应用和工具的年度活动,包括数据科学、机器学习、科学计算、数据可视化、教育和科学研究等领域。
🐱赞助&支持
如果你喜欢周刊,请分享给其他需要的同学,让更多人可以从中受益~
如果你觉得周刊有价值,请随意赞赏[35] 或 买杯咖啡[36] 进行支持!
如果你想帮助周刊办得更好,欢迎向我们投稿或提出建议:投稿/建议通道[37]
如果你是品牌方或广告主,欢迎私信我,洽谈赞助与合作事项。
🐼欢迎订阅
微信公众号[38]:除更新周刊外,还发布其它原创作品,并转载一些优质文章。(可加好友,可加读者交流群)
博客[39] 及 RSS[40]:我的独立博客,上面有历年原创/翻译的技术文章,以及从 2009 年以来的一些随笔。
Github[41]:你可以获取本周刊的 Markdown 源文件,做任何想做的事!
邮件[42]:在 Substack 上开通的频道,满足你通过邮件阅读时事通讯的诉求。
Telegram[43]:除了发布周刊的通知外,我将它视为一个“副刊”,补充发布更加丰富的资讯。
Twitter[44]:我的关注列表里有大量 Python 相关的开发者与组织的账号。
参考资料
[1]
PEP-703 无 GIL CPython 的进展: https://lwn.net/Articles/947138/
[2]PEP-703 的讨论: https://discuss.python.org/t/pep-703-making-the-global-interpreter-lock-optional/22606/123
[3]PEP-730 CPython 提供对 iOS 的官方支持: https://peps.python.org/pep-0730/
[4]BeeWare: https://beeware.org/
[5]Kivy: https://kivy.org/
[6]Django 进阶:开发高级的功能: https://www.pythoncentral.io/the-next-step-in-django-development-advanced-features-to-consider/
[7]在 Python 中开发异步的任务队列: https://testdriven.io/blog/developing-an-asynchronous-task-queue-in-python/
[8]Flask、它的生态和向后兼容性: https://pgjones.dev/blog/flask-ecosystem-compatibility-2023/
[9]继续关于 Flask 的讨论: https://blog.miguelgrinberg.com/post/some-more-to-talk-about-flask
[10]我们必须聊聊 Flask: https://blog.miguelgrinberg.com/post/we-have-to-talk-about-flask
[11]介绍 rip - 快速而简约的 pip 实现: https://prefix.dev/blog/introducing_rip
[12]使用 Rust 将数据分析速度提高 180,000 倍: https://willcrichton.net/notes/k-corrset/
[13]什么是 lambda 表达式?: https://www.pythonmorsels.com/lambda-expressions/
[14]手撸个视频翻译和配音工具玩玩 结果不太妙: https://juejin.cn/post/7293420609088798731
[15]掌握使用 FastAPI 进行集成测试: https://alex-jacobs.com/posts/fastapitests/
[16]Python 代码转为 LATEX 公式工具: https://www.biaodianfu.com/latexify-python.html
[17]https://pythoncat.top/tags/weekly: https://pythoncat.top/tags/weekly
[18]celery:分布式任务队列: https://github.com/celery/celery
[19]rq:简单的任务队列: https://github.com/rq/rq
[20]huey:轻量级的任务队列: https://github.com/coleifer/huey
[21]rip:快速解决和安装 Python 包(Rust 版 pip): https://github.com/prefix-dev/rip
[22]Selenium-python-helium:Web 自动化库,让 Selenium 更好用: https://github.com/mherrmann/selenium-python-helium
[23]rendercv:用 YAML/JSON 文件创建 PDF 格式的简历: https://github.com/sinaatalay/rendercv
[24]latexify_py:用 Python 代码生成 LaTeX 表达式: https://github.com/google/latexify_py
[25]localpilot:Mac 上的 Github Copilot: https://github.com/danielgross/localpilot
[26]annoy:C++/Python 的近似最近邻搜索: https://github.com/spotify/annoy
[27]voyager:用于 Python 和 Java 的近似邻搜索库: https://github.com/spotify/voyager
[28]Test-Agent:国内首个测试行业大模型工具: https://github.com/codefuse-ai/Test-Agent
[29]waymax:用于自动驾驶研究的基于 JAX 的模拟器: https://github.com/waymo-research/waymax
[30]Python 的代码生成:拆解 Jinja: https://www.youtube.com/watch?v=jXlR0Icvvh8
[31]演讲的 PPT: https://speakerdeck.com/mitsuhiko/code-generation-in-python-dismantling-jinja
[32]让我们聊一聊模板: https://www.youtube.com/watch?v=rHmljD-oZrY
[33]演讲的 PPT: https://speakerdeck.com/mitsuhiko/lets-talk-about-templates
[34]JupyterCon 2023 视频 86 个: https://www.youtube.com/playlist?list=PL_1BH3ug7n1Ih_Yy2TmM7MZ2zogSLZvzE
[35]赞赏: https://img.pythoncat.top/wechat_code.png
[36]买杯咖啡: https://www.buymeacoffee.com/pythoncat
[37]投稿/建议通道: https://github.com/chinesehuazhou/python-weekly/issues/new
[38]微信公众号: https://img.pythoncat.top/python_cat.jpg
[39]博客: https://pythoncat.top
[40]RSS: https://pythoncat.top/rss.xml
[41]Github: https://github.com/chinesehuazhou/python-weekly
[42]邮件: https://pythoncat.substack.com
[43]Telegram: https://t.me/pythontrendingweekly
[44]Twitter: https://twitter.com/chinesehuazhou
如果你觉得本文有帮助
请慷慨分享和点赞,感谢啦!
这篇关于Python 潮流周刊#24:no-GIL 提案正式被采纳了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!