Python运维学习Day02-subprocess/threading/psutil

2023-10-30 04:04

本文主要是介绍Python运维学习Day02-subprocess/threading/psutil,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 检测网段在线主机
  • 2. 获取系统变量的模块 psutil

1. 检测网段在线主机

import subprocessdef checkIP(ip):cmd = f'ping -n 1 -w 1 {ip}'null = open('nlll',mode='wb')status = subprocess.call(cmd,shell=True,stdout=null,stderr=null)if status == 0:print(f"主机[{ip}]在线")null.close()if __name__ == '__main__':for i in range(1,255,1):ip = f"192.169.3.{i}"checkIP(ip)

运行结果:
在这里插入图片描述

我们看看 subprocess.call的用法


In [10]: subprocess.call??
Signature: subprocess.call(*popenargs, timeout=None, **kwargs)
Source:
def call(*popenargs, timeout=None, **kwargs):"""Run command with arguments.  Wait for command to complete ortimeout, then return the returncode attribute.The arguments are the same as for the Popen constructor.  Example:retcode = call(["ls", "-l"])"""with Popen(*popenargs, **kwargs) as p:try:return p.wait(timeout=timeout)except:  # Including KeyboardInterrupt, wait handled that.p.kill()# We don't call p.wait() again as p.__exit__ does that for us.raise
File:      c:\users\thinkpad\appdata\local\programs\python\python39\lib\subprocess.py
Type:      function

该函数运行一条带参数的命令,返回值执行命令的返回码,运行时发现如此串联运行太慢了,我们修改下代码让其并行运行。

import subprocess
import threadingdef checkIP(ip):cmd = f'ping -n 1 -w 1 {ip}'null = open('nlll',mode='wb')status = subprocess.call(cmd,shell=True,stdout=null,stderr=null)if status == 0:print(f"主机[{ip}]在线")null.close()if __name__ == '__main__':for i in range(1,255,1):ip = f"192.169.3.{i}"ping_threading = threading.Thread(target=checkIP,args=(ip,))ping_threading.start()

我们看一下threading.Thread的用法


In [12]: threading.Thread??
Init signature:
threading.Thread(group=None,target=None,name=None,args=(),kwargs=None,*,daemon=None,
)
Source:
class Thread:"""A class that represents a thread of control.This class can be safely subclassed in a limited fashion. There are two waysto specify the activity: by passing a callable object to the constructor, orby overriding the run() method in a subclass."""_initialized = Falsedef __init__(self, group=None, target=None, name=None,args=(), kwargs=None, *, daemon=None):"""This constructor should always be called with keyword arguments. Arguments are:*group* should be None; reserved for future extension when a ThreadGroupclass is implemented.*target* is the callable object to be invoked by the run()method. Defaults to None, meaning nothing is called.*name* is the thread name. By default, a unique name is constructed ofthe form "Thread-N" where N is a small decimal number.*args* is the argument tuple for the target invocation. Defaults to ().*kwargs* is a dictionary of keyword arguments for the targetinvocation. Defaults to {}.If a subclass overrides the constructor, it must make sure to invokethe base class constructor (Thread.__init__()) before doing anythingelse to the thread."""assert group is None, "group argument must be None for now"if kwargs is None:kwargs = {}self._target = targetself._name = str(name or _newname())self._args = argsself._kwargs = kwargsif daemon is not None:self._daemonic = daemonelse:self._daemonic = current_thread().daemonself._ident = Noneif _HAVE_THREAD_NATIVE_ID:self._native_id = Noneself._tstate_lock = Noneself._started = Event()self._is_stopped = Falseself._initialized = True# Copy of sys.stderr used by self._invoke_excepthook()self._stderr = _sys.stderrself._invoke_excepthook = _make_invoke_excepthook()# For debugging and _after_fork()_dangling.add(self)def _reset_internal_locks(self, is_alive):# private!  Called by _after_fork() to reset our internal locks as# they may be in an invalid state leading to a deadlock or crash.self._started._at_fork_reinit()if is_alive:# bpo-42350: If the fork happens when the thread is already stopped# (ex: after threading._shutdown() has been called), _tstate_lock# is None. Do nothing in this case.if self._tstate_lock is not None:self._tstate_lock._at_fork_reinit()self._tstate_lock.acquire()else:# The thread isn't alive after fork: it doesn't have a tstate# anymore.self._is_stopped = Trueself._tstate_lock = Nonedef __repr__(self):assert self._initialized, "Thread.__init__() was not called"status = "initial"if self._started.is_set():status = "started"self.is_alive() # easy way to get ._is_stopped set when appropriateif self._is_stopped:status = "stopped"if self._daemonic:status += " daemon"if self._ident is not None:status += " %s" % self._identreturn "<%s(%s, %s)>" % (self.__class__.__name__, self._name, status)def start(self):"""Start the thread's activity.It must be called at most once per thread object. It arranges for theobject's run() method to be invoked in a separate thread of control.This method will raise a RuntimeError if called more than once on thesame thread object."""if not self._initialized:raise RuntimeError("thread.__init__() not called")if self._started.is_set():raise RuntimeError("threads can only be started once")with _active_limbo_lock:_limbo[self] = selftry:_start_new_thread(self._bootstrap, ())except Exception:with _active_limbo_lock:del _limbo[self]raiseself._started.wait()def run(self):"""Method representing the thread's activity.You may override this method in a subclass. The standard run() methodinvokes the callable object passed to the object's constructor as thetarget argument, if any, with sequential and keyword arguments takenfrom the args and kwargs arguments, respectively."""try:if self._target:self._target(*self._args, **self._kwargs)finally:# Avoid a refcycle if the thread is running a function with# an argument that has a member that points to the thread.del self._target, self._args, self._kwargs
...
File:           c:\users\thinkpad\appdata\local\programs\python\python39\lib\threading.py
Type:           type
Subclasses:     Timer, _MainThread, _DummyThread, HistorySavingThread

这里着重讲下几个重要参数和start方法
target: 一个回调函数,将会运行run()方法。
args: 元组对象,回调函数target的参数
start: 开始激活线程

2. 获取系统变量的模块 psutil

查看当前用户的名称,和开机时间

In [14]: import psutil as psIn [15]: ps.users()
Out[15]: [suser(name='ThinkPad', terminal=None, host=None, started=1698541200.6304576, pid=None)]In [16]: ps.users()[0]
Out[16]: suser(name='ThinkPad', terminal=None, host=None, started=1698541200.6304576, pid=None)In [17]: ps.users()[0].started
Out[17]: 1698541200.6304576In [18]: import datetimeIn [19]: t = ps.users()[0].startedIn [20]: datetime.datetime.fromtimestamp(t)
Out[20]: datetime.datetime(2023, 10, 29, 9, 0, 0, 630458)

获取电脑cpu核数

In [23]: ps.cpu_count()
Out[23]: 8In [24]: ps.cpu_count??
Signature: ps.cpu_count(logical=True)
Source:
def cpu_count(logical=True):"""Return the number of logical CPUs in the system (same asos.cpu_count() in Python 3.4).If *logical* is False return the number of physical cores only(e.g. hyper thread CPUs are excluded).Return None if undetermined.The return value is cached after first call.If desired cache can be cleared like this:>>> psutil.cpu_count.cache_clear()"""if logical:ret = _psplatform.cpu_count_logical()else:ret = _psplatform.cpu_count_cores()if ret is not None and ret < 1:ret = Nonereturn ret
File:      c:\users\thinkpad\envs\support\lib\site-packages\psutil\__init__.py
Type:      function

这里默认是获取的逻辑核,如果要获取是物理核数,需要加上参数logical=False

In [25]: ps.cpu_count(logical=False)
Out[25]: 4

获取boot开机时间

In [29]: ps.boot_time??
Signature: ps.boot_time()
Source:
def boot_time():"""Return the system boot time expressed in seconds since the epoch."""# Note: we are not caching this because it is subject to# system clock updates.return _psplatform.boot_time()
File:      c:\users\thinkpad\envs\support\lib\site-packages\psutil\__init__.py
Type:      functionIn [30]: b = ps.boot_time()In [31]: b
Out[31]: 1698541187.1580527In [32]: datetime.datetime.fromtimestamp(b)
Out[32]: datetime.datetime(2023, 10, 29, 8, 59, 47, 158053)

获取电脑内存信息

In [36]: ps.virtual_memory()
Out[36]: svmem(total=17048784896, available=10635776000, percent=37.6, used=6413008896, free=10635776000)In [37]: ps.virtual_memory??
Signature: ps.virtual_memory()
Source:
def virtual_memory():"""Return statistics about system memory usage as a namedtupleincluding the following fields, expressed in bytes:- total:total physical memory available.- available:the memory that can be given instantly to processes without thesystem going into swap.This is calculated by summing different memory values dependingon the platform and it is supposed to be used to monitor actualmemory usage in a cross platform fashion.- percent:the percentage usage calculated as (total - available) / total * 100- used:memory used, calculated differently depending on the platform anddesigned for informational purposes only:macOS: active + wiredBSD: active + wired + cachedLinux: total - free- free:memory not being used at all (zeroed) that is readily available;note that this doesn't reflect the actual memory available(use 'available' instead)Platform-specific fields:- active (UNIX):memory currently in use or very recently used, and so it is in RAM.- inactive (UNIX):memory that is marked as not used.- buffers (BSD, Linux):cache for things like file system metadata.- cached (BSD, macOS):cache for various things.- wired (macOS, BSD):memory that is marked to always stay in RAM. It is never moved to disk.- shared (BSD):memory that may be simultaneously accessed by multiple processes.The sum of 'used' and 'available' does not necessarily equal total.On Windows 'available' and 'free' are the same."""global _TOTAL_PHYMEMret = _psplatform.virtual_memory()# cached for later use in Process.memory_percent()_TOTAL_PHYMEM = ret.totalreturn ret
File:      c:\users\thinkpad\envs\support\lib\site-packages\psutil\__init__.py
Type:      functionIn [38]:

获取cpu性能,上下文切换,硬件中断,软件中断,系统调用

In [42]: ps.cpu_stats()
Out[42]: scpustats(ctx_switches=217425683, interrupts=185259877, soft_interrupts=0, syscalls=753877621)In [43]: ps.cpu_stats??
Signature: ps.cpu_stats()
Source:
def cpu_stats():"""Return CPU statistics."""return _psplatform.cpu_stats()
File:      c:\users\thinkpad\envs\support\lib\site-packages\psutil\__init__.py
Type:      function
```

这篇关于Python运维学习Day02-subprocess/threading/psutil的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305474

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步