Contest 2050 and Codeforces Round #718 C. Fillomino 2(思维)

2023-10-30 03:58

本文主要是介绍Contest 2050 and Codeforces Round #718 C. Fillomino 2(思维),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目连接:https://codeforces.com/contest/1517/problem/C

Fillomino is a classic logic puzzle. (You do not need to know Fillomino in order to solve this problem.) In one classroom in Yunqi town, some volunteers are playing a board game variant of it:

Consider an n by n chessboard. Its rows are numbered from 1 to n from the top to the bottom. Its columns are numbered from 1 to n from the left to the right. A cell on an intersection of x-th row and y-th column is denoted (x,y). The main diagonal of the chessboard is cells (x,x) for all 1≤x≤n.

A permutation of {1,2,3,…,n} is written on the main diagonal of the chessboard. There is exactly one number written on each of the cells. The problem is to partition the cells under and on the main diagonal (there are exactly 1+2+…+n such cells) into n connected regions satisfying the following constraints:

Every region should be connected. That means that we can move from any cell of a region to any other cell of the same region visiting only cells of the same region and moving from a cell to an adjacent cell.
The x-th region should contain cell on the main diagonal with number x for all 1≤x≤n.
The number of cells that belong to the x-th region should be equal to x for all 1≤x≤n.
Each cell under and on the main diagonal should belong to exactly one region.
Input
The first line contains a single integer n (1≤n≤500) denoting the size of the chessboard.

The second line contains n integers p1, p2, …, pn. pi is the number written on cell (i,i). It is guaranteed that each integer from {1,…,n} appears exactly once in p1, …, pn.

Output
If no solution exists, output −1.

Otherwise, output n lines. The i-th line should contain i numbers. The j-th number on the i-th line should be x if cell (i,j) belongs to the the region with x cells.

Examples

input

3
2 3 1

output

2
2 3
3 3 1

input

5
1 2 3 4 5

output

1
2 2
3 3 3
4 4 4 4
5 5 5 5 5

分析

对角线每个位置每个位置能向右延伸就向右,不能就向下延伸,必定可以实现。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;int n;
int vis[505][505],d[505],a[505][505];
int dirx[2]={0, 1};
int diry[2]={-1, 0};void dfs(int x,int y,int s,int step)
{a[x][y] = s;vis[x][y] = 1;if(s == step) return;for(int i=0;i<2;i++){int xx = x + dirx[i];int yy = y + diry[i];if(vis[xx][yy] == 0 && xx <= n && yy >0){dfs(xx, yy, s, step + 1);break;}}
}int main() {scanf("%d",&n);for(int i=1;i<=n;i++){int x;scanf("%d",&x);dfs(i, i, x, 1);}for(int i=1;i<=n;i++){for(int j=1;j<=i;j++)printf("%d ",a[i][j]);printf("\n");}return 0;
}

这篇关于Contest 2050 and Codeforces Round #718 C. Fillomino 2(思维)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305427

相关文章

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin

2014 Multi-University Training Contest 7小记

1003   数学 , 先暴力再解方程。 在b进制下是个2 , 3 位数的 大概是10000进制以上 。这部分解方程 2-10000 直接暴力 typedef long long LL ;LL n ;int ok(int b){LL m = n ;int c ;while(m){c = m % b ;if(c == 3 || c == 4 || c == 5 ||

2014 Multi-University Training Contest 6小记

1003  贪心 对于111...10....000 这样的序列,  a 为1的个数,b为0的个数,易得当 x= a / (a + b) 时 f最小。 讲串分成若干段  1..10..0   ,  1..10..0 ,  要满足x非递减 。  对于 xi > xi+1  这样的合并 即可。 const int maxn = 100008 ;struct Node{int

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

颠覆你的开发模式:敏捷思维带来的无限可能

敏捷软件开发作为现代软件工程的重要方法论,强调快速响应变化和持续交付价值。通过灵活的开发模式和高效的团队协作,敏捷方法在应对动态变化和不确定性方面表现出色。本文将结合学习和分析,探讨系统变化对敏捷开发的影响、业务与技术的对齐以及敏捷方法如何在产品开发过程中处理持续变化和迭代。 系统变化对敏捷软件开发的影响 在敏捷软件开发中,系统变化的管理至关重要。系统变化可以是需求的改变、技术的升级、

AtCoder Beginner Contest 370 Solution

A void solve() {int a, b;qr(a, b);if(a + b != 1) cout << "Invalid\n";else Yes(a);} B 模拟 void solve() {qr(n);int x = 1;FOR(i, n) FOR(j, i) qr(a[i][j]);FOR(i, n) x = x >= i ? a[x][i]: a[i][x];pr2(