STM32F103ZET6【标准库函数开发】------06 ADC实验

2023-10-30 03:30

本文主要是介绍STM32F103ZET6【标准库函数开发】------06 ADC实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32 的 ADC 是 12 位逐次逼近型的模拟数字转换器。它有 18 个通道,可测量 16 个外部和 2 个内部信号源。各通道的 A/D 转换可以单次、连续、扫描或间断模式执行。 ADC 的结果可以左对齐或右对齐方式存储在 16 位数据寄存器中。STM32 的 ADC 最大的转换速率为 1Mhz,也就是转换时间为 1us(在 ADCCLK=14M,采样周期为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。
STM32 将 ADC 的转换分为 2 个通道组:规则通道组和注入通道组。
STM32F103ZET 包含有 3 个 ADC,分别为ADC1,ADC2,ADC3。
在这里插入图片描述

对于每个要转换的通道,采样时间建议尽量长一点,以获得较高的准确度,但是这样会降
低 ADC 的转换速率。 ADC 的转换时间可以由以下公式计算:
Tcovn=采样时间+12.5 个周期
其中: Tcovn 为总转换时间,采样时间是根据每个通道的 SMP 位的设置来决定的。例如,当 ADCCLK=14Mhz 的时候,并设置 1.5 个周期的采样时间,则得到: Tcovn=1.5+12.5=14 个周期=14*1/14us=1us。

我们介绍一下我们执行规则通道的单次转换,需要用到的 ADC 寄存器。
1.ADC 控制寄存器(ADC_CR1 和 ADC_CR2)
2. ADC 采样事件寄存器(ADC_SMPR1 和 ADC_SMPR2),这两个寄存器用于设置通道 0~17 的采样时间,每个通道占用 3 个位。
3.ADC 规则序列寄存器(ADC_SQR1~3) ,该寄存器总共有 3 个,这几个寄存器的功能都差不多。
4.ADC 规则数据寄存器(ADC_DR)。规则序列中的 AD 转化结果都将被存在这个寄存器里面,而注入通道的转换结果被保存在 ADC_JDRx 里面。
5.ADC 寄存器为 ADC 状态寄存器(ADC_SR),该寄存器保存了 ADC 转换时的各种状态。

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
本次将利用 STM32F1 的 ADC1通道 1(PA1) 来采样外部电压值,并通过串口调试助手打印出来。

1)开启PA和ADC1时钟+PA1初始化:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1, ENABLE );//使能PA和ADC1通道时钟
//PA1 作为模拟通道输入引脚                         
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;		//模拟输入引脚
GPIO_Init(GPIOA, &GPIO_InitStructure);
2)复位ADC1+ 设置分频因子:
ADC_DeInit(ADC1);  //复位ADC1
RCC_ADCCLKConfig(RCC_PCLK2_Div6);   //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M

STM32 的 ADC 最大的转换速率为 1Mhz,也就是转换时间为 1us(在 ADCCLK=14M,采样周期为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。

3)ADC初始化
ADC_InitTypeDef ADC_InitStructure; 
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;	//ADC工作模式:ADC1和ADC2工作在独立模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE;	//模数转换工作在单通道模式
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;	//模数转换工作在单次转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//转换由软件而不是外部触发启动
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//ADC数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1;	//顺序进行规则转换的ADC通道的数目
ADC_Init(ADC1, &ADC_InitStructure);	//根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 
4)ADC使能并校准
	ADC_Cmd(ADC1, ENABLE);	//使能指定的ADC1	ADC_ResetCalibration(ADC1);	//复位校准  	 while(ADC_GetResetCalibrationStatus(ADC1));	//等待复位校准结束	ADC_StartCalibration(ADC1);	 //ADC1校准while(ADC_GetCalibrationStatus(ADC1));	 //等待ADC1校准结束 ADC_SoftwareStartConvCmd(ADC1, ENABLE);	 //使能ADC1的软件转换启动功能
5)读取ADC的值
u16 Get_Adc(u8 ch)   
{//设置指定ADC的规则组通道,一个序列,采样时间ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 );	//ADC1,ADC通道,采样时间为239.5周期	  			     ADC_SoftwareStartConvCmd(ADC1, ENABLE);		//使能指定的ADC1的软件转换启动功能		 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束return ADC_GetConversionValue(ADC1);	//返回最近一次ADC1规则组的转换结果
}u16 Get_Adc_Average(u8 ch,u8 times)  //多次测量求平均值
{u32 temp_val=0;u8 t;for(t=0;t<times;t++){temp_val+=Get_Adc(ch);delay_ms(5);}return temp_val/times;
} 	
/*******************************************************************************/
ch是ADC通道,可选择如下
#define IS_ADC_CHANNEL(CHANNEL) (((CHANNEL) == ADC_Channel_0) || ((CHANNEL) == ADC_Channel_1) || \((CHANNEL) == ADC_Channel_2) || ((CHANNEL) == ADC_Channel_3) || \((CHANNEL) == ADC_Channel_4) || ((CHANNEL) == ADC_Channel_5) || \((CHANNEL) == ADC_Channel_6) || ((CHANNEL) == ADC_Channel_7) || \((CHANNEL) == ADC_Channel_8) || ((CHANNEL) == ADC_Channel_9) || \((CHANNEL) == ADC_Channel_10) || ((CHANNEL) == ADC_Channel_11) || \((CHANNEL) == ADC_Channel_12) || ((CHANNEL) == ADC_Channel_13) || \((CHANNEL) == ADC_Channel_14) || ((CHANNEL) == ADC_Channel_15) || \((CHANNEL) == ADC_Channel_16) || ((CHANNEL) == ADC_Channel_17))
6)主函数
 int main(void){	 u16 adcx;float temp;delay_init();	    	 //延时函数初始化	  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组2:2位抢占优先级,2位响应优先级uart_init(115200);	 	//串口初始化为115200	 	Adc_Init();		  		//ADC初始化while(1){adcx=Get_Adc_Average(ADC_Channel_1,10);temp=(float)adcx*(3.3/4096);printf("ADC的值为:%.8f\r\n",temp);//将采集到的ADC的值打印到串口delay_ms(250);	}}
图1
图2

这篇关于STM32F103ZET6【标准库函数开发】------06 ADC实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305323

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

Vue3项目开发——新闻发布管理系统(六)

文章目录 八、首页设计开发1、页面设计2、登录访问拦截实现3、用户基本信息显示①封装用户基本信息获取接口②用户基本信息存储③用户基本信息调用④用户基本信息动态渲染 4、退出功能实现①注册点击事件②添加退出功能③数据清理 5、代码下载 八、首页设计开发 登录成功后,系统就进入了首页。接下来,也就进行首页的开发了。 1、页面设计 系统页面主要分为三部分,左侧为系统的菜单栏,右侧

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之效率。 何谓v0.dev? v0.dev者,现代化之开发者工具也,旨在简化并加速软件开发之过程。其集多种功能于一体,助开发者高效编写、测试及部署代码。无论汝为前端开发者、后端开发者