STM32F103ZET6【标准库函数开发】------06 ADC实验

2023-10-30 03:30

本文主要是介绍STM32F103ZET6【标准库函数开发】------06 ADC实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32 的 ADC 是 12 位逐次逼近型的模拟数字转换器。它有 18 个通道,可测量 16 个外部和 2 个内部信号源。各通道的 A/D 转换可以单次、连续、扫描或间断模式执行。 ADC 的结果可以左对齐或右对齐方式存储在 16 位数据寄存器中。STM32 的 ADC 最大的转换速率为 1Mhz,也就是转换时间为 1us(在 ADCCLK=14M,采样周期为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。
STM32 将 ADC 的转换分为 2 个通道组:规则通道组和注入通道组。
STM32F103ZET 包含有 3 个 ADC,分别为ADC1,ADC2,ADC3。
在这里插入图片描述

对于每个要转换的通道,采样时间建议尽量长一点,以获得较高的准确度,但是这样会降
低 ADC 的转换速率。 ADC 的转换时间可以由以下公式计算:
Tcovn=采样时间+12.5 个周期
其中: Tcovn 为总转换时间,采样时间是根据每个通道的 SMP 位的设置来决定的。例如,当 ADCCLK=14Mhz 的时候,并设置 1.5 个周期的采样时间,则得到: Tcovn=1.5+12.5=14 个周期=14*1/14us=1us。

我们介绍一下我们执行规则通道的单次转换,需要用到的 ADC 寄存器。
1.ADC 控制寄存器(ADC_CR1 和 ADC_CR2)
2. ADC 采样事件寄存器(ADC_SMPR1 和 ADC_SMPR2),这两个寄存器用于设置通道 0~17 的采样时间,每个通道占用 3 个位。
3.ADC 规则序列寄存器(ADC_SQR1~3) ,该寄存器总共有 3 个,这几个寄存器的功能都差不多。
4.ADC 规则数据寄存器(ADC_DR)。规则序列中的 AD 转化结果都将被存在这个寄存器里面,而注入通道的转换结果被保存在 ADC_JDRx 里面。
5.ADC 寄存器为 ADC 状态寄存器(ADC_SR),该寄存器保存了 ADC 转换时的各种状态。

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
本次将利用 STM32F1 的 ADC1通道 1(PA1) 来采样外部电压值,并通过串口调试助手打印出来。

1)开启PA和ADC1时钟+PA1初始化:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1, ENABLE );//使能PA和ADC1通道时钟
//PA1 作为模拟通道输入引脚                         
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;		//模拟输入引脚
GPIO_Init(GPIOA, &GPIO_InitStructure);
2)复位ADC1+ 设置分频因子:
ADC_DeInit(ADC1);  //复位ADC1
RCC_ADCCLKConfig(RCC_PCLK2_Div6);   //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M

STM32 的 ADC 最大的转换速率为 1Mhz,也就是转换时间为 1us(在 ADCCLK=14M,采样周期为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。

3)ADC初始化
ADC_InitTypeDef ADC_InitStructure; 
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;	//ADC工作模式:ADC1和ADC2工作在独立模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE;	//模数转换工作在单通道模式
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;	//模数转换工作在单次转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//转换由软件而不是外部触发启动
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//ADC数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1;	//顺序进行规则转换的ADC通道的数目
ADC_Init(ADC1, &ADC_InitStructure);	//根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 
4)ADC使能并校准
	ADC_Cmd(ADC1, ENABLE);	//使能指定的ADC1	ADC_ResetCalibration(ADC1);	//复位校准  	 while(ADC_GetResetCalibrationStatus(ADC1));	//等待复位校准结束	ADC_StartCalibration(ADC1);	 //ADC1校准while(ADC_GetCalibrationStatus(ADC1));	 //等待ADC1校准结束 ADC_SoftwareStartConvCmd(ADC1, ENABLE);	 //使能ADC1的软件转换启动功能
5)读取ADC的值
u16 Get_Adc(u8 ch)   
{//设置指定ADC的规则组通道,一个序列,采样时间ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 );	//ADC1,ADC通道,采样时间为239.5周期	  			     ADC_SoftwareStartConvCmd(ADC1, ENABLE);		//使能指定的ADC1的软件转换启动功能		 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束return ADC_GetConversionValue(ADC1);	//返回最近一次ADC1规则组的转换结果
}u16 Get_Adc_Average(u8 ch,u8 times)  //多次测量求平均值
{u32 temp_val=0;u8 t;for(t=0;t<times;t++){temp_val+=Get_Adc(ch);delay_ms(5);}return temp_val/times;
} 	
/*******************************************************************************/
ch是ADC通道,可选择如下
#define IS_ADC_CHANNEL(CHANNEL) (((CHANNEL) == ADC_Channel_0) || ((CHANNEL) == ADC_Channel_1) || \((CHANNEL) == ADC_Channel_2) || ((CHANNEL) == ADC_Channel_3) || \((CHANNEL) == ADC_Channel_4) || ((CHANNEL) == ADC_Channel_5) || \((CHANNEL) == ADC_Channel_6) || ((CHANNEL) == ADC_Channel_7) || \((CHANNEL) == ADC_Channel_8) || ((CHANNEL) == ADC_Channel_9) || \((CHANNEL) == ADC_Channel_10) || ((CHANNEL) == ADC_Channel_11) || \((CHANNEL) == ADC_Channel_12) || ((CHANNEL) == ADC_Channel_13) || \((CHANNEL) == ADC_Channel_14) || ((CHANNEL) == ADC_Channel_15) || \((CHANNEL) == ADC_Channel_16) || ((CHANNEL) == ADC_Channel_17))
6)主函数
 int main(void){	 u16 adcx;float temp;delay_init();	    	 //延时函数初始化	  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组2:2位抢占优先级,2位响应优先级uart_init(115200);	 	//串口初始化为115200	 	Adc_Init();		  		//ADC初始化while(1){adcx=Get_Adc_Average(ADC_Channel_1,10);temp=(float)adcx*(3.3/4096);printf("ADC的值为:%.8f\r\n",temp);//将采集到的ADC的值打印到串口delay_ms(250);	}}
图1
图2

这篇关于STM32F103ZET6【标准库函数开发】------06 ADC实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305323

相关文章

VSCode开发中有哪些好用的插件和快捷键

《VSCode开发中有哪些好用的插件和快捷键》作为全球最受欢迎的编程工具,VSCode的快捷键体系是提升开发效率的核心密码,:本文主要介绍VSCode开发中有哪些好用的插件和快捷键的相关资料,文中... 目录前言1、vscode插件1.1 Live-server1.2 Auto Rename Tag1.3

Agent开发核心技术解析以及现代Agent架构设计

《Agent开发核心技术解析以及现代Agent架构设计》在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力,简单来说,Agent是一个能够自主感知环境、理解任务、制定... 目录一、回归本源:到底什么是Agent?二、核心链路拆解:Agent的"大脑"与"四肢"1. 规划模

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版