C++之lambda匿名、using、typedef总结【全】(二百四十九)

2023-10-29 21:44

本文主要是介绍C++之lambda匿名、using、typedef总结【全】(二百四十九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长!

优质专栏:Audio工程师进阶系列原创干货持续更新中……】🚀

人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药.

更多原创,欢迎关注:Android系统攻城狮

欢迎关注Android系统攻城狮

1.前言

本篇目的:理解C++之lambda匿名函数、typedef、using等用法

2.C++之lambda匿名、using、typedef介绍

1.lambda介绍

  • Lambda函数是一种匿名函数,可以在C++中使用。它提供了一种简洁的方式来定义和使用临时的函数对象。Lambda函数通过使用方便的语法来简化函数对象的创建过程,使代码更加简洁和易读。

Lambda函数的基本语法如下:

[capture list] (parameters) -> return_type { function_body }
  • Capture列表:指定Lambda函数所捕获的外部变量。它可以是值捕获(通过值进行拷贝)或引用捕获(通过引用进行访问)的方式。
  • 参数列表:指定Lambda函数的参数。
  • 返回类型:指定Lambda函数的返回类型(可以省略,编译器会自动推断)。
  • 函数体:实现Lambda函数的具体逻辑。

3.lambda匿名、using、typedef介绍

  1. Lambda匿名函数:
    Lambda函数是一种匿名函数,允许我们在需要函数对象的地方定义临时的、即时的函数逻辑。它的语法如下:
[capture list] (parameters) -> return_type { function_body }
  • Capture列表(可选): 指定Lambda函数所捕获的外部变量。
  • 参数列表: 指定Lambda函数的参数。
  • 返回类型(可选): 指定Lambda函数的返回类型。如果不指定,则编译器会自动推断。
  • 函数体: 实现Lambda函数的具体逻辑。

Lambda函数可以用于算法函数、STL容器的处理、回调函数等地方,可以使代码更加简洁和易读。

  1. using声明:
    Using声明在C++中用来引入一个特定的类型或命名空间,以便在当前作用域中使用。它的语法如下:
using name = type;

这里的name是我们定义的别名,type是需要引入的类型。

Using声明可以用来简化复杂的类型名称,或者引入命名空间中的类型。例如:

using IntVector = std::vector<int>;IntVector numbers = {1, 2, 3, 4, 5};

这里,我们使用了using声明引入了std::vector<int>类型的别名IntVector,从而将其简化为更易读的名称。

  1. typedef声明:
    Typedef声明也是用来引入一个特定的类型别名,以便在当前作用域中使用。它的语法如下:
typedef type name;

这里的type是我们需要引入的类型,name是我们定义的别名。

Typedef声明的作用和using声明类似,它也可以用来简化复杂的类型名称。例如:

typedef std::vector<int> IntVector;IntVector numbers = {1, 2, 3, 4, 5};

这里,我们使用了typedef声明将std::vector<int>类型定义为IntVector,从而使代码更加易读。

总结:
Lambda函数提供了一种简洁的方式来定义匿名函数,using声明和typedef声明提供了简化类型名称的能力。这些工具可以使代码更加清晰、易读和易于维护。

3.代码实例

v1.0 函数调用实例

#include <iostream>
#include <string>
#include <functional>typedef std::function<int(int x, int y)> Callback ;
using UCallback = std::function<int(int x, int y)> ;//v1.0
int call_add(std::function<int(int x, int y)> call){int a = 100, b=500;call(a, b);//传值a,b给调用者.return a+b;
}//v2.0: 与以上等同:使用typedef定义Callback类型别名定义
int call_add_01(Callback call){int a = 100, b=500;call(a, b);//传值a,b给调用者.return a+b;
}//v3.0: 与以上等同:使用using定义UCallback类型别名定义
int call_add_02(UCallback call){int a = 100, b=500;call(a, b);//传值a,b给调用者.return a+b;
}int main() {//v1.0:匿名lambda函数,无参数,无返回值.[](){printf("xxx----->%s(), line = %d\n",__FUNCTION__,__LINE__);}();//v2.0:匿名lambda函数,带string参数,无返回值.[](std::string content){printf("xxx----->%s(), line = %d, content = %s\n",__FUNCTION__,__LINE__,content.c_str());}("Hello Wolrd.");//v3.0:匿名lambda函数,带string和int类型参数,无返回值.std::string buf = "Hello, C++!";int year = 2023;[](std::string buf, int years){printf("xxx----->%s(), line = %d, buf = %s, years = %d\n",__FUNCTION__,__LINE__,buf.c_str(), years);}(buf, year);//v3.1: lambda带返回值int moth = [](std::string buf, int years){printf("xxx----->%s(), line = %d, buf = %s, years = %d\n",__FUNCTION__,__LINE__,buf.c_str(), years);int month = 10;return month;}(buf, year);printf("xxx----->%s(), line = %d, moth = %d\n",__FUNCTION__,__LINE__,moth);//4.0: 使用typedef创建别名类型Callback,然后调用回调函数.Callback add = [](int a, int b)->int {printf("xxx---------->%s(), line = %d, a = %d, b = %d\n",__FUNCTION__,__LINE__,a,b);return a + b;};printf("xxx----->%s(), line = %d, add = %d\n",__FUNCTION__,__LINE__,add(2, 3));//v5.0: 使用typedef定义回调函数类型别名int ret1 = call_add(add);printf("xxx----->%s(), line = %d, ret1 = %d\n",__FUNCTION__,__LINE__,ret1);//v6.0: 直接使用lambda匿名回调函数int ret2 = call_add([](int x, int y)->int{return x + y;});printf("xxx----->%s(), line = %d, ret2 = %d\n",__FUNCTION__,__LINE__,ret2);//v7.0: 使用typedef定义回调函数类型别名int ret3 = call_add_01(add);printf("xxx----->%s(), line = %d, ret3 = %d\n",__FUNCTION__,__LINE__,ret3);//v8.0: 使用using定义回调函数类型别名int ret4 = call_add_02(add);printf("xxx----->%s(), line = %d, ret4 = %d\n",__FUNCTION__,__LINE__,ret4);//v9.0: 直接使用lambda匿名回调函数int ret5 = call_add_02([](int x, int y)->int{return x + y;});printf("xxx----->%s(), line = %d, ret5 = %d\n",__FUNCTION__,__LINE__,ret5);return 0;
}

v2.0 类指针、引用、指针的引用实例01

#include <iostream>
#include <string>
#include <memory>
#include <functional>class TEST{
public:void log(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(std::shared_ptr<TEST> &test){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}
};//1.typedef定义:typedef 类型 别名.
typedef std::function<void(std::shared_ptr<TEST> &test)> Callback ;
//2.using定义:using 别名 = 类型.
using UCallback = std::function<void(std::shared_ptr<TEST> &test)> ;void callback_test(std::function<void(std::shared_ptr<TEST> &test)> func){std::shared_ptr<TEST> tt = std::make_shared<TEST>();func(tt);
}int main() {//v1.0: lambda匿名函数返回指针TEST*类型,无参数TEST *t1 = [&]()->TEST*{return new TEST;}();t1->log();//v1.1TEST *t12 = [&]()->TEST*{return new TEST;}();t12->log();//2.0: lambda匿名函数返回TEST类型指针对象,无参数TEST t2 = [&]()->TEST{return TEST{}; //TEST{}创建对象方式}();t2.log();//v2.1: TEST()创建对象方式TEST t21 = [&]()->TEST{return TEST();}();t21.log();//3.0: lambda匿名函数返回TEST类型指针对象,无返回值TEST *t3;[&](TEST *tr){tr = new TEST;}(t3);t3->log();//4.0: lambda匿名函数返回TEST类型指针的引用对象,无返回值TEST *t4;[&](TEST* &tr){//指针的引用tr = new TEST();}(t4);t4->log();//5.0: lambda匿名函数返回TEST类型shared_ptr指针对象,无返回值std::shared_ptr<TEST> t5;[&](std::shared_ptr<TEST> tr){//指向TEST类型shared_ptr指针对象tr = std::make_shared<TEST>();}(t5);t5->log();//6.0: lambda匿名函数返回TEST类型shared_ptr指针的引用对象,无返回值std::shared_ptr<TEST> t6;[&](std::shared_ptr<TEST> &tr){//指向TEST类型shared_ptr指针的引用的对象,即make_shared<TEST>()指针对象的别名.tr = std::make_shared<TEST>();}(t6);t6->log();//7.0: lambda匿名函数返回TEST类型shared_ptr指针的引用对象std::shared_ptr<TEST> t7;[&](std::shared_ptr<TEST> &tr)->std::shared_ptr<TEST> {//指向TEST类型shared_ptr指针的引用的对象,即make_shared<TEST>()指针对象的别名.//tr = std::make_shared<TEST>();return std::make_shared<TEST>(tr);}(t7);t7->log();//8.0: lambda匿名函数返回TEST类型shared_ptr指针的引用对象,有返回值和参数./*t8和t8.get()区别:t8是一个std::shared_ptr<TEST>类型的共享指针,指向一个TEST对象.t8.get(): 返回的是一个指向同一对象的原始指针.*/std::shared_ptr<TEST> t8;[&](void* tr) -> std::shared_ptr<TEST> {return std::make_shared<TEST>(static_cast<TEST*>(tr));}(t8.get());t8->log();//9.0std::shared_ptr<TEST> t10;callback_test([&](std::shared_ptr<TEST>& tr) -> void {t10 = tr;});t10->log();return 0;
}

v3.0 类指针、引用、指针的引用实例02

#include <iostream>
#include <string>
#include <memory>
#include <functional>class TEST{
public:void log(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(std::shared_ptr<TEST> &test){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}
};//1.typedef定义:typedef 类型 别名.
typedef std::function<void(std::shared_ptr<TEST> &test)> Callback ;
//2.using定义:using 别名 = 类型.
using UCallback = std::function<void(std::shared_ptr<TEST> &test)> ;void callback_test(std::function<void(std::shared_ptr<TEST> &test)> func){std::shared_ptr<TEST> tt = std::make_shared<TEST>();func(tt);
}std::shared_ptr<TEST> callback_ret(){//std::shared_ptr<TEST> tt = std::make_shared<TEST>();//return tt;return std::make_shared<TEST>();
}int main() {//v1.0std::shared_ptr<TEST> t1= callback_ret();t1->log();//v2.0std::shared_ptr<TEST> t2;callback_test([&](std::shared_ptr<TEST> &tr) -> void {t2 = tr;});t2->log();return 0;
}

C++中shared_ptr和shared_ptr::get()实现

template<typename T>
class shared_ptr {
public:explicit shared_ptr(T* ptr = nullptr) : ptr_(ptr), ref_count_(new int(1)) {}~shared_ptr() {if (--(*ref_count_) == 0) {delete ptr_;delete ref_count_;}}shared_ptr(const shared_ptr& other) : ptr_(other.ptr_), ref_count_(other.ref_count_) {++(*ref_count_);}shared_ptr& operator=(const shared_ptr& other) {if (this != &other) {if (--(*ref_count_) == 0) {delete ptr_;delete ref_count_;}ptr_ = other.ptr_;ref_count_ = other.ref_count_;++(*ref_count_);}return *this;}T* get() const {return ptr_;}private:T* ptr_;               // 指向所管理的对象的原始指针int* ref_count_;       // 引用计数,记录共享此对象的智能指针数量
};

shared_ptr类维护了一个指针ptr_和一个计数器ref_count_。每当有新的shared_ptr指向相同的对象时,ref_count_会递增。当没有shared_ptr指向该对象时,ref_count_会减少并在变为零时释放资源。

get()函数的实现非常简单,它只需返回私有成员ptr_,即所管理的对象原始指针。

这篇关于C++之lambda匿名、using、typedef总结【全】(二百四十九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303543

相关文章

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa