C++配平化学方程式,附源码。配平化学方程式的C++代码实现

2023-10-29 20:52

本文主要是介绍C++配平化学方程式,附源码。配平化学方程式的C++代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

化学方程式是化学反应简明的表达形式,它从“质”和“量”两个方面表达了化学反应的意义。故化学方程式的书写是我们学习化学的过程中不可或缺的一个重要环节。当我们遇到简单的化学方程式例如:2H2 + O2 = 2H2O 时,配平则是毫无压力,但是若遇到类似Fe36Si5 + H3PO4 + K2CrO7 = FePO4 + SiO2 + K3PO4+ CrPO4 + H2O 这种元素种类繁多,化学计量数复杂的化学方程式,若仅依靠人力去配平可能是一件极为困难的事情。而计算机具有庞大的计算能力,故我们想到编写程序来解决复杂化学方程的配平。本程序将实现化学方程式和离子方程式的配平,并支持检测输入的方程式是否配平。

主要思路:

先做字符串处理,把每个物质的的每种原子数都找出来,

然后利用每种原子的守恒 关于系数 列出方程组 进行求解 (化合价好像不太现实,我化学不好)

先说方程的解法,

解线性方程组当然是要用高斯消元了。

/*
Chemical Equation Balancer
HiJ1m 2017.10.6
*/
#include<bits/stdc++.h>
using namespace std;
inline int gcd(int x,int y){return x%y==0?y:gcd(y,x%y);
}
inline int lcm(int x,int y){return x*y/gcd(x,y);
}
struct frac{                            //分数类 int a,b;void reduce(){int x=gcd(a,b);a/=x,b/=x;};frac operator = (int x){a=x,b=1;return *this;};frac operator = (const frac x){a=x.a,b=x.b;reduce();return *this;};frac operator + (const frac x){return (frac){b*x.a+a*x.b,b*x.b};};frac operator - (const frac x){return (frac){a*x.b-b*x.a,b*x.b};};frac operator * (const frac x){return (frac){a*x.a,b*x.b};};frac operator / (const frac x){return (frac){a*x.b,b*x.a};};bool operator < (const frac x){return a*x.b<b*x.a;};bool operator == (const frac x){return a*x.b==b*x.a;};void print(){if(b==1)printf("%d\n",a);else printf("%d/%d\n",a,b);};
};        
inline frac Abs(frac x){int p=x.a>0?x.a:-x.a,q=x.b>0?x.b:-x.b;return (frac){p,q};
}                                            
char s[55];
int fun[55][55];
int Map[27][27];                        //手动MAP 
frac M[55][55];                            //求解矩阵
frac ans[55];                            //解 
int Ans[55];                            //整数解 
int cnt,c1,c2,flag=1,N,K;                //cnt数元素,c1数反应物,c2总数 (未知数的数量) 
char mat[55][55];                        //存储物质的名称 
void print(){printf("%d %d\n",N,K);for(int i=1;i<=K;i++){for(int j=1;j<=N+1;j++)printf("%d ",M[i][j].a);printf("\n");}printf("\n");
}
inline int getint(int pos){                //读数 pos++;if(s[pos]>='a'&&s[pos]<='z')pos++;if(s[pos]<'0'||s[pos]>'9')return 1;                                //没数就是1 else {int x=0;while(s[pos]>='0'&&s[pos]<='9')x=x*10+s[pos]-'0',pos++;        //读元素后面的数字 return x;}
}
inline void scan(int l,int r){             //处理物质    c2++;for(int i=0;i<=r-l;i++)mat[c2][i]=s[l+i];        //存下元素的名字if(flag==1)c1++;                                //统计一下反应物数量int tmp=1;                                        //tmp是小括号倍数 for(int i=l;i<=r;i++){if(s[i]==')')tmp=1;                                                        if(s[i]=='('){int j=i+1;while(s[j]!=')')j++;            //找这个括号的范围 tmp=getint(j);                            //读")"右边的数字 }if(s[i]>='A'&&s[i]<='Z'){                    //发现元素 int x=s[i]-'A'+1,y=0;if(s[i+1]>='a'&&s[i]<='z')                //看一眼是一个字母的还是两个的 y=s[i+1]-'a'+1;if(!Map[x][y])Map[x][y]=++cnt;            //判重fun[Map[x][y]][c2]+=flag*getint(i)*tmp;    //把这个物质里的这种元素数量放进矩阵里,坐标(map[x][y],c2) }} 
}
inline bool Solve(){                    //解方程  (矩阵 高cnt,宽c2+1,c2+1列常数全0) ans[c2]=1;                                    //令最后一个解为1for(int i=1;i<=cnt;i++){for(int j=1;j<=c2;j++)M[i][j]=fun[i][j];}for(int i=1;i<=cnt;i++)M[i][c2].a=-M[i][c2].a;            //移到常数 //高斯消元过程 N=c2-1,K=cnt;for(int k=1;k<=N;k++){frac maxm=(frac){-1,1};int maxi;for(int i=k;i<=K;i++)if(maxm<Abs(M[i][k]))maxm=Abs(M[i][k]),maxi=i;if(maxm==(frac){0,1})return false;if(maxi!=k)for(int j=1;j<=N+1;j++){swap(M[k][j],M[maxi][j]);}frac tmp=M[k][k];for(int j=1;j<=N+1;j++)M[k][j]=M[k][j]/tmp;for(int i=k-1?1:2;i<=K;i++){if(i==k)continue;frac tmp=M[i][k];for(int j=1;j<=N+1;j++)M[i][j]=M[i][j]-tmp*M[k][j];}}return true;
}
int main()
{
//    printf("Chemical Equation Balancer\n");
//    printf("\nEnter the chemical equation:\n");scanf("%s",s);int lst=0;for(int i=1;i<strlen(s);i++){if(i==strlen(s)-1)scan(lst,i);                    if(s[i]=='+'||s[i]=='=')scan(lst,i-1),lst=i+1;     if(s[i]=='=')flag=-1;                            //等号后面的系数变负 }if(Solve())for(int i=1;i<=c2-1;i++)ans[i]=M[i][N+1];else printf("No Solution");int tmp=lcm(ans[1].b,ans[2].b);for(int i=3;i<=c2;i++)tmp=lcm(tmp,ans[i].b);for(int i=1;i<=c2;i++)Ans[i]=ans[i].a*tmp/ans[i].b;    //取分母Lcm,把分数变整数 for(int i=1;i<=c2;i++){if(Ans[i]>1)printf("%d",Ans[i]);for(int j=0;j<strlen(mat[i]);j++)printf("%c",mat[i][j]);if(i==c2)return 0;else if(i==c1)printf("=");else printf("+");}
}

另一个代码:

/* Exzh Cross Platfrom Toolkit (ECPT) Qt Version* (This file is the part of the ECPT Project)* Author: Exzh_PMGI* E-mail: realexzh@gmail.com* License: LGPL v3.0 / Exzh Commerical License* Copyright: (C) Exzh_PMGI* Qt Framework 5.10 has been tested successfully* If you want to use the code for business,* please contact me by my email.*/#include "exequationbalancer.h"#include <QDebug>int gcd(int x, int y) {return x % y == 0 ? y : gcd(y, x%y);
}int lcm(int x, int y) {return x * y / gcd(x, y);
}frac createFrac(int a, int b)
{frac tmp = { a,b };return tmp;
}frac Abs(frac x) {int p = x.a>0 ? x.a : -x.a, q = x.b>0 ? x.b : -x.b;return createFrac(p, q);
}string exEquationBalancer::getResult(string inputstr)
{strcpy(s,inputstr.c_str());int lst = 0;for (int i = 1;i<strlen(s);i++) {if (i == strlen(s) - 1)scan(lst, i);if (s[i] == '+' || s[i] == '='){scan(lst, i - 1);lst = i + 1;}if (s[i] == '=')flag = -1;                            //等号后面的系数变负}if (Solve())for (int i = 1;i <= c2 - 1;i++)ans[i] = M[i][N + 1];else output+="No Solution";int tmp = lcm(ans[1].b, ans[2].b);for (int i = 3;i <= c2;i++)tmp = lcm(tmp, ans[i].b);for (int i = 1;i <= c2;i++)Ans[i] = ans[i].a*tmp / ans[i].b;    //取分母Lcm,把分数变整数for (int i = 1;i <= c2;i++){if (Ans[i]>1) output+=to_string(Ans[i]);for (int j = 0;j<strlen(mat[i]);j++)output+=mat[i][j];if (i == c2){return output;qDebug()<<QString::fromStdString(output);}else if (i == c1) output+="=";else output+="+";}
}bool exEquationBalancer::Solve() {                    //解方程  (矩阵 高cnt,宽c2+1,c2+1列常数全0)ans[c2] = 1;                                    //令最后一个解为1for (int i = 1;i <= cnt;i++) {for (int j = 1;j <= c2;j++)M[i][j] = fun[i][j];}for (int i = 1;i <= cnt;i++)M[i][c2].a = -M[i][c2].a;            //移到常数//高斯消元过程N = c2 - 1, K = cnt;for (int k = 1;k <= N;k++) {frac maxm = createFrac(-1, 1);int maxi;for (int i = k;i <= K;i++)if (maxm<Abs(M[i][k]))maxm = Abs(M[i][k]), maxi = i;if (maxm == createFrac(0, 1))return false;if (maxi != k)for (int j = 1;j <= N + 1;j++) {swap(M[k][j], M[maxi][j]);}frac tmp = M[k][k];for (int j = 1;j <= N + 1;j++)M[k][j] = M[k][j] / tmp;for (int i = k - 1 ? 1 : 2;i <= K;i++) {if (i == k)continue;frac tmp = M[i][k];for (int j = 1;j <= N + 1;j++)M[i][j] = M[i][j] - tmp * M[k][j];}}return true;
}void exEquationBalancer::scan(int l, int r) {             //处理物质c2++;for (int i = 0;i <= r - l;i++)mat[c2][i] = s[l + i];        //存下元素的名字if (flag == 1)c1++;                                //统计一下反应物数量int tmp = 1;                                        //tmp是小括号倍数for (int i = l;i <= r;i++) {if (s[i] == ')')tmp = 1;if (s[i] == '(') {int j = i + 1;while (s[j] != ')')j++;            //找这个括号的范围tmp = getint(j);                            //读")"右边的数字}if (s[i] >= 'A'&&s[i] <= 'Z') {                    //发现元素int x = s[i] - 'A' + 1, y = 0;if (s[i + 1] >= 'a'&&s[i] <= 'z')                //看一眼是一个字母的还是两个的y = s[i + 1] - 'a' + 1;if (!Map[x][y])Map[x][y] = ++cnt;            //判重fun[Map[x][y]][c2] += flag * getint(i)*tmp;    //把这个物质里的这种元素数量放进矩阵里,坐标(map[x][y],c2)}}
}int exEquationBalancer::getint(int pos) {                //读数pos++;if (s[pos] >= 'a'&&s[pos] <= 'z')pos++;if (s[pos]<'0' || s[pos]>'9')return 1;                                //没数就是1else {int x = 0;while (s[pos] >= '0'&&s[pos] <= '9')x = x * 10 + s[pos] - '0', pos++;        //读元素后面的数字return x;}
}void exEquationBalancer::print() {output += to_string(N);output += " ";output += to_string(K);output += "\n";for (int i = 1;i <= K;i++) {for (int j = 1;j <= N + 1;j++){output += to_string(M[i][j].a);output += " ";}output += "\n";}output += "\n";
}

c++头文件

/* Exzh Cross Platfrom Toolkit (ECPT) Qt Version* (This file is the part of the ECPT Project)* Author: Exzh_PMGI* E-mail: realexzh@gmail.com* License: LGPL v3.0 / Exzh Commerical License* Copyright: (C) Exzh_PMGI* Qt Framework 5.10 has been tested successfully* If you want to use the code for business,* please contact me by my email.*/#ifndef EXEQUATIONBALANCER_H
#define EXEQUATIONBALANCER_H#include <string>
#include "../exstdc++.h"using namespace std;
static string output;
int lcm(int x, int y);
int gcd(int x, int y);struct frac {                            //分数类int a, b;void reduce() {int x = gcd(a, b);a /= x, b /= x;}frac createFrac(int a, int b){frac tmp = { a,b };return tmp;}frac operator = (int x) {a = x, b = 1;return *this;}frac operator = (const frac x) {a = x.a, b = x.b;reduce();return *this;}frac operator + (const frac x) {return createFrac(b*x.a + a * x.b, b*x.b);}frac operator - (const frac x) {return createFrac(a*x.b - b * x.a, b*x.b);}frac operator * (const frac x) {return createFrac(a*x.a, b*x.b);}frac operator / (const frac x) {return createFrac(a*x.b, b*x.a);}bool operator < (const frac x) {return a * x.b<b*x.a;}bool operator == (const frac x) {return a * x.b == b * x.a;}void print() {if (b == 1){output += to_string(a);output += "\n";}else{output += to_string(a);output += "/";output += to_string(b);}}
};frac createFrac(int a, int b);
frac Abs(frac x);class exEquationBalancer
{
public:string getResult(string inputstr);private:bool Solve();void scan(int l, int r);int getint(int pos);void print();char s[55];int fun[55][55];int Map[27][27];                        //手动MAPfrac M[55][55];                            //求解矩阵frac ans[55];                            //解int Ans[55];                            //整数解int cnt, c1, c2, flag = 1, N, K;                //cnt数元素,c1数反应物,c2总数 (未知数的数量)char mat[55][55];                        //存储物质的名称
};#endif // EXEQUATIONBALANCER_H

附录:

怎样用高斯消元 方法/步骤

下面的是咱们要求解的线性方程组,先把四个方程编上序号。

先把第一行乘以1/2,然后把第一行的相应倍数加到第二、三、四行上。

再把第二行乘以-2,接着将其相应的倍数加到第三、四行上,然后把第三行乘以-1/6。

将第三行的二倍加到第四行上,再把第四行乘以3/7。

然后往回代,就是把第四行的相应倍数加到第一、第二、第三行上;把第三行的相应倍数加到第一、第二行上。

再把第二行的相应倍数加到第一行上,最后根据得出的矩阵列出方程组,解得最后的解。

这篇关于C++配平化学方程式,附源码。配平化学方程式的C++代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303294

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo