Spark(四)Spark血统概念——宽依赖和窄依赖

2023-10-29 13:40
文章标签 依赖 概念 spark 血统

本文主要是介绍Spark(四)Spark血统概念——宽依赖和窄依赖,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.血统概念

2.宽依赖和窄依赖

3.宽依赖与窄依赖之间的对比


1.血统概念

利用内存加快数据加载,在众多的其它的In-Memory类数据库或Cache类系统中也有实现,Spark的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问题时采用的方案。为了保证RDD中数据的鲁棒性,RDD数据集通过所谓的血统关系(Lineage)记住了它是如何从其它RDD中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的备份或者LOG机制,RDD的Lineage记录的是粗颗粒度的特定数据转换(Transformation)操作(filter, map, join etc.)行为。当这个RDD的部分分区数据丢失时,它可以通过Lineage获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了Spark的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。

 

2.宽依赖和窄依赖

Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度图中需要对计算过程划分stage,而划分依据就是RDD之间的依赖关系。针对不同的转换函数,RDD在Lineage依赖方面分为两种窄依赖(Narrow Dependencies)与宽依赖(Wide Dependencies, 也称 shuffle dependency)用来解决数据容错时的高效性。

Narrow Dependencies:是指父RDD的每一个分区最多被一个子RDD的分区所用。表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。图中,map/filter和union属于第一类,对输入进行协同划分(co-partitioned)的join属于第二类。

Wide Dependencies:是指子RDD的分区依赖于父RDD的多个分区或所有分区,也就是说存在一个父RDD的一个分区对应一个子RDD的多个分区。对与Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage方法对与输入节点完好,而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为无法重试,需要向上其祖先追溯看是否可以重试(这就是lineage,血统的意思),Narrow Dependencies对于数据的重算开销要远小于Wide Dependencies的数据重算开销。

如图所示:

容错

在RDD计算,通过checkpoint进行容错,做checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错,默认是logging the updates方式,通过记录跟踪所有生成RDD的转换(transformations)也就是记录每个RDD的lineage(血统)来重新计算生成丢失的分区数据。

 

3.宽依赖与窄依赖之间的对比

相比于宽依赖,窄依赖对优化很有利 ,主要基于以下两点:

        1.宽依赖往往对应着shuffle操作,需要在运行过程中将同一个父RDD的分区传入到不同的子RDD分区中,中间可能涉及多个节点之间的数据传输;而窄依赖的每个父RDD的分区只会传入到一个子RDD分区中,通常可以在一个节点内完成转换。

        2.当RDD分区丢失时(某个节点故障),spark会对数据进行重算。

(1)对于窄依赖,由于父RDD的一个分区只对应一个子RDD分区,这样只需要重算和子RDD分区对应的父RDD分区即可,所以这个重算对数据的利用率是100%的;

(2)对于宽依赖,重算的父RDD分区对应多个子RDD分区,这样实际上父RDD 中只有一部分的数据是被用于恢复这个丢失的子RDD分区的,另一部分对应子RDD的其它未丢失分区,这就造成了多余的计算;更一般的,宽依赖中子RDD分区通常来自多个父RDD分区,极端情况下,所有的父RDD分区都要进行重新计算。

(3)如下图所示,b1分区丢失,则需要重新计算a1,a2和a3,这就产生了冗余计算(a1,a2,a3中对应b2的数据)。

以下是文章 RDD:基于内存的集群计算容错抽象 中对宽依赖和窄依赖的对比。

区分这两种依赖很有用。

首先,窄依赖允许在一个集群节点上以流水线的方式(pipeline)计算所有父分区。例如,逐个元素地执行map、然后filter操作;而宽依赖则需要首先计算好所有父分区数据,然后在节点之间进行Shuffle,这与MapReduce类似。

第二,窄依赖能够更有效地进行失效节点的恢复,即只需重新计算丢失RDD分区的父分区,而且不同节点之间可以并行计算;而对于一个宽依赖关系的Lineage图,单个节点失效可能导致这个RDD的所有祖先丢失部分分区,因而需要整体重新计算。

【误解】之前一直理解错了,以为窄依赖中每个子RDD可能对应多个父RDD,当子RDD丢失时会导致多个父RDD进行重新计算,所以窄依赖不如宽依赖有优势。而实际上应该深入到分区级别去看待这个问题,而且重算的效用也不在于算的多少,而在于有多少是冗余的计算。窄依赖中需要重算的都是必须的,所以重算不冗余。

窄依赖的函数有:map, filter, union, join(父RDD是hash-partitioned ), mapPartitions, mapValues
宽依赖的函数有:groupByKey, join(父RDD不是hash-partitioned ), partitionBy
 

参考:

Spark Lineage(血统)

Spark 中的宽依赖和窄依赖

spark中Stage的划分

 

1.什么是血统?

2.宽窄依赖的概念并画图?

3.RDD是如何容错的?容错方式有哪几种?默认是什么方式?如何容错?

4.窄依赖优于宽依赖的地方?

5.窄依赖的函数有?宽依赖的函数有?

这篇关于Spark(四)Spark血统概念——宽依赖和窄依赖的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301008

相关文章

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

python中poetry安装依赖

《python中poetry安装依赖》本文主要介绍了Poetry工具及其在Python项目中的安装和使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前言1. 为什么pip install poetry 会造成依赖冲突1.1 全局环境依赖混淆:1

每天认识几个maven依赖(ActiveMQ+activemq-jaxb+activesoap+activespace+adarwin)

八、ActiveMQ 1、是什么? ActiveMQ 是一个开源的消息中间件(Message Broker),由 Apache 软件基金会开发和维护。它实现了 Java 消息服务(Java Message Service, JMS)规范,并支持多种消息传递协议,包括 AMQP、MQTT 和 OpenWire 等。 2、有什么用? 可靠性:ActiveMQ 提供了消息持久性和事务支持,确保消

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)

计算机网络基础概念 交换机、路由器、网关、TBOX

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、VLAN是什么?二 、交换机三、路由器四、网关五、TBOXTelematics BOX,简称车载T-BOX,车联网系统包含四部分,主机、车载T-BOX、手机APP及后台系统。主机主要用于车内的影音娱乐,以及车辆信息显示;车载T-BOX主要用于和后台系统/手机APP通信,实现手机APP的车辆信息显示与控